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Abstract

Using a novel geospatial panel combined with data from the 2015
American Community Survey (ACS), we investigate the effect of topog-
raphy – altitude and terrain unevenness – on income segregation at the
neighborhood level. Specifically, we perform large-scale counterfactual
simulations by estimating household preferences for topography, altering
the topographical profile of each city, and observing the resulting neigh-
borhood sorting outcome. We find that unevenness contributes to the
segmentation of markets: in the absence of hilliness, rich and poor house-
holds experience greater mixing. Hillier cities are more income-segregated
because of their unevenness; the opposite is true for flatter cities.
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1 Introduction

It is documented that high-income households in US urban areas concentrate
in high-altitude, topographically uneven neighborhoods (Ye and Becker 2018;
Lee and Lin 2018). Elevation and unevenness – more specifically, better scenery,
lack of crime, and microclimate – likely are amenities enjoyed mainly by the
wealthy, with an income elasticity well above unity. Moreover, elevation variance
also may impose a cost to poor households by constraining walkability and access
to public transit.

This paper analyzes the economic consequences of topography – altitude and
unevenness of terrain – in a neighborhood sorting framework. Using data from
25 major Metropolitan Statistical Areas (MSAs) containing more than a quarter
of all US urban census tracts, we demonstrate the extent to which topography
affects within-city income sorting equilibria. Specifically, we estimate not only
demand-side topography-induced neighborhood amenity effects by household
income, but also supply-side effects of topography as a constraint to the quality
and composition of local housing stock.

This is achieved by combining the 2015 American Community Survey (ACS)
with novel geospatial panel data to estimate household preferences for topo-
graphical characteristics and other neighborhood amenities. Using these pref-
erences, we specify two large-scale counterfactual simulation models: one which
“flattens” MSAs to a baseline, city-average altitude and zero elevation variance,
and a second “reverse” counterfactual which doubles both within and across-
tract unevenness. In both cases we observe the resulting neighborhood sorting
outcome and, in so doing, separate topography-based income sorting from that
of preferences for other neighborhood amenities.

Removing topographical features decreases MSA-level income segregation.
Own-neighborhood income falls for the rich and rises for the poor, and house-
holds outside of the top income decile are more likely to live alongside those in
the adjacent, richer decile. The opposite is true when we double unevenness:
rich households converge to hilly areas, enjoy higher neighborhood income levels,
and experience higher prices. Poor and middle-income households live in flatter,
cheaper, and poorer locations and display greater mixing among themselves.

Counterfactual results are largely consistent when we remove neighborhood-
specific housing quality effects from the model to simulate a scenario where
utility derived from neighborhood amenities is fully determined by a tract’s
location and the income level of its households. However, preferences of the
richest households become further differentiated from those of the middle class
when fixed housing quality effects are eliminated, leading to the centralizing
of upper-middle class households which, consequently, forces a fraction of the
poorest out to the far suburbs.

Additionally, to simulate the housing supply effect of topography, we de-
correlate topography and compositions of housing units by spatially smooth-
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ing households’ utility derived from qualities and types of local housing stock
and randomly re-assigning the residuals within each MSA. The outcome of the
“housing supply” counterfactual is comparable to that of flattening cities: the
rich experience less unevenness, lower altitudes, and poorer neighborhoods, and
the reverse applies to the poor. This similarity suggests that the relationship be-
tween neighborhood income and topography is best explained by a combination
of demand and supply-side effects.

A key benefit of our approach is the ability to explicitly account for sorting
equilibrium effects and the role of income-specific tastes for residential location
qualities in affecting the counterfactual outcome. For example, eliminating un-
evenness leads households to sort more strongly on other aspects of housing
quality. In this case, gains to very poor households may be partially canceled
out as their preferences for non-topographic amenities becomes further differ-
entiated from those of poor and middle-income groups.

The salient implication of our findings is that topography is neither only
reflective of a historical amenity for the rich nor merely a locational determinant
of where rich households locate: income sorting equilibria of current cities are
less segregated when they are flattened. Residential sorting outcomes of uneven
cities (San Francisco, Portland) are qualitatively different from those of flat
cities (Chicago, Miami) because of their unevenness.

Section 2 presents a review of prior literature related to topographical effects,
neighborhood sorting and spatial modelling. Section 3 discusses data sources
and methodologies for calibrating and simulating the counterfactuals. Results
are outlined and discussed in Section 4, and Section 5 concludes.

2 Literature

We believe this is the first paper to investigate the relationship between
elevation gradient effects and neighborhood sorting outcomes. This relation-
ship is absent even in modern treatments of urban spatial equilibrium models
(for example, Lucas and Rossi–Hansberg 2002). A limited yet growing body of
literature addresses the role of elevation gradients in the formation and devel-
opment of cities: examples include the desirability of coastal living (Rappaport
and Sachs 2003), flood risk associated with low-lying areas (Scawthorn, Iemura,
and Yamada 1982; Shilling, Sirmans, and Benjamin 1989; Bin et al. 2011), and
geographical features as a cause of initial locational choice of current European
cities (Bosker and Buringh 2015). Although only tangentially related to ele-
vation gradient effects as discussed in this paper, these analyses nonetheless
suggest the possibility of elevation affecting distributional outcomes of neigh-
borhood income at the city-level.

The classic literature on the economic consequences of elevation gradients
primarily focuses on elevation and, more broadly, geographical features as a
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constraint to land supply. Rose (1989) studies land supply effects caused by
large bodies of water such as lakes and oceans. Kok, Monkkonen, and Quigley
(2014) investigate determinants of land value in San Francisco and find evidence
of elevation effects, though their primary focus is on land use regulations.

Utilizing satellite data and a broad, 73-MSA dataset, Saiz (2010) presents
evidence that undevelopable land on the city periphery is a strong predictor
of low housing supply elasticity. While this is a seminal paper, it emphasizes
differences at the MSA-level and not intra-urban locational choice or supply
elasticities. The approach of using hilliness as an instrument for housing supply
has also been applied in a number of recent papers such as (Baum-Snow and
Han 2019).

Bleakley and Lin (2012) emphasize path dependence and persistence for
urban agglomerations at portages but focus on counties or cities rather than
at the neighborhood level. Ananat (2011) uses variation in historic railroad
track location to explain patterns of variation in racial segregation across cities.
Berger and Enflo (2017) provide a similar study for Sweden that emphasizes
the importance of initial railroad lines for city growth. Duranton and Turner
(2012) explore the impact on urban growth patterns of the expansion of the
US interstate highway system. Pierce and Kolden (2015) provide a variety of
hilliness measures for 100 US cities, but do not explore the associated economic
implications.

Beyond the role of elevation as a land supply constraint, Lee and Lin (2018)
build on prior literature (Bleakley and Lin 2012; Lin 2015) on the economic
consequences of geographic features to present evidence that “natural” amenities
influence spatial income distributions within urban areas. They model natural
geographical features as immutable points of attraction for rich households and
demonstrate that proximity to hills and a range of other geographical features
such as coastal proximity and lakes is correlated with higher income levels.
Consistent with the immutable role of hilliness, Lee and Lin (2018) find that
flatter cities experience substantially more change in the social composition of
neighborhoods and in intra-neighborhood income distribution over time than
do their hillier counterparts.

This discussion is developed by Ye and Becker (2017a). They present evi-
dence using transaction-level housing price data from Hong Kong that the unde-
sirability of walking up or downhill to public transit stations is robustly factored
into sales prices: other factors constant, a 1-decimal-degree increase in the slope
between a middle to middle-low income class apartment and the closest metro
stop decreases its selling price by up to 1.9%. While Hong Kong may be an out-
lier among major cities worldwide because of its extremely uneven topography,
the findings nonetheless suggest that elevation may not only be an attraction
to the rich through natural amenity effects but also a deterrent to the poor by
increasing the difficulty of accessing public transit.

Ye and Becker (2018b) further develop the discussion in two ways. First,
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they show that the economic influence of topography is not limited to cities that
are conventionally considered to be rich in natural amenities. In other words,
cities do not need to be as uneven as San Francisco or Portland for elevation
effects to play a nontrivial role in income and population distributions. Sec-
ond, that preferences for terrain unevenness and higher altitudes by the rich
and distastes by the poor can be broken down into preferences for intermedi-
ary amenities such as lower crime (further evidenced by Kelsay and Haberman
2020a; 2020b) superior microclimate, lack of traffic congestion, and difficulty
of accessing public transit. Through such effects, both middle and low-income
households display preferences or distaste for unevenness, even though they are
not all wealthy enough to value scenery per se.

In a paper perhaps most closely related to ours, Allen and Arkiolakis (2014)
develop an equilibrium trade model to explain variation in spatial inequality of
income due to physical location at the US county (but not within-MSA) level.
Their many findings include the implication that extreme amenities are an im-
portant source of inequality for a limited set of prosperous counties; overall,
geographic variation appears to be responsible for as much as one-fifth of spa-
tial variation in US income. However, this result is driven by location rather
than topography. In another related work, Andreoli and Peluso (2017) focus
on variation in neighborhood inequality for 50 MSAs, but do not include a
topographic component.

Our contribution to this literature is threefold. First, we identify a relation-
ship between unevenness and the degree of neighborhood income stratification
through a counterfactual framework. While the possibility that elevation gra-
dients merely determine where stratification occurs cannot be ruled out by a
regression-based analysis, our counterfactual simulation explicitly introduces a
quasi-experiment comparing the same set of MSAs with and without topograph-
ical features. This approach allows us to show that holding all other factors con-
stant, more uneven cities are indeed more stratified income-wise. Additionally,
once preferences lead to stratification, they could be reinforced by local spatial
externalities across residents, as documented by Guerrieri, Hartley and Hurst
(2013) and Rossi-Hansberg, Sarte and Owens (2010).

Second, we distinguish between demand and supply-side effects of elevation
gradients by employing a general equilibrium approach with an explicit treat-
ment of housing supply quality. In our baseline simulation, unevenness enters
only through household demand for location and, because housing quality effects
are fixed, is solely responsible for the counterfactual outcome. Conversely, the
only source of variation in the “housing supply” counterfactual is the elimina-
tion of direct correlation between unevenness and specific aspects of the quality
of a tract’s housing stock. Hence, we achieve relatively clean treatments of
unevenness both as a natural amenity for the rich and as a constraint for the
quality of local housing stock.

Finally, our approach allows for multiple counterfactual simulations where
amenities and preferences can be selectively altered to reflect different scenar-
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ios. By both simulating the flat-city case and a scenario where all MSAs are
twice as uneven, we present a much stronger case for our inferences on income-
decile-specific effects. We also selectively restrict the functionality of parts of
the simulation, such as neighborhood housing quality effects, to reflect assump-
tions about the extent to which such amenities can be considered exogenous or
endogenous.

3 Data and Methodology

3.1 Data

We use census tract-level data from the 2015 American Community Survey
(ACS) for our multi-MSA panel and select 25 major MSAs for the simulation
model.1 The sample of MSAs is selected to maximize diversity in terms of geo-
graphical location, with MSAs being approximately equally distributed among
Census Bureau statistical regions, and with each of the ten Standard Federal
Regions being represented by at least one MSA in the data.

All dataset MSAs are selected such that they contain a minimum of 100
census tracts. While we do not select for MSAs with substantial terrain un-
evenness, extremely flat cities (Chicago, Miami) are excluded from the dataset.
In addition, New York MSA is omitted because it has by far the largest number
of census tracts among all US MSAs (3,288), more than twice as large as the
largest dataset MSA (Washington DC, 1,281), and is likely an outlier in terms of
sorting dynamics, housing market conditions as well the distribution of quality
across tracts. MSA-specific summary statistics are presented in Table 1.

1Albuquerque , Atlanta , Austin, Baltimore, Boston, Charlotte, Cincinnati, Colorado Springs,
Denver, Kansas City, Los Angeles, Louisville, Memphis, Nashville, Omaha, Phoenix, Pitts-
burgh, Portland (OR), Salt Lake City, San Diego, San Francisco, Seattle, St. Louis, Tucson,
and Washington DC
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Table 1: Summary statistics of dataset MSAs

Albuquerque Atlanta Austin Baltimore Boston
No. of Tracts 203 938 345 662 945
No. of households 343,434 1,945,508 682,841 1,014,043 1,690,304
Avg housing price ($) 138,745 139,507 156,898 215,012 270,338
Avg tract income ($) 65,427 78,980 86,314 92,277 102,488

Charlotte Cincinnati CO Springs Denver Kansas City
No. of Tracts 424 496 135 608 533
No. of households 690,992 818,462 253,756 1,026,271 807,165
Avg housing price ($) 146,731 124,153 164,179 197,808 124,787
Avg tract income ($) 77,685 73,981 76,808 87,713 76,495

Los Angeles Louisville Memphis Nashville Omaha
No. of Tracts 789 315 310 361 254
No. of households 1,275,802 508,694 486,008 629,204 343,656
Avg housing price ($) 176,274 125,563 103,485 156,761 118,556
Avg tract income ($) 72,431 68,626 66,633 75,540 75,502

Phoenix Pittsburgh Portland Salt Lake City San Diego
No. of Tracts 981 706 488 234 622
No. of households 1,556,535 988,201 882,439 381,795 1,087,836
Avg housing price ($) 145,333 114,790 187,710 189,700 271,771
Avg tract income ($) 72,968 71,769 79,372 81,570 86,906

San Fran. Seattle St. Louis Tucson Washington DC2

No. of Tracts 953 709 616 233 1,281
No. of households 1,621,912 1,380,387 1,105,213 377,987 2,014,619
Avg housing price ($) 401,876 231,156 131,049 125,176 289,247
Avg tract income ($) 116,182 92,840 74,468 63,729 119,433

This dataset is merged with high-resolution Digital Elevation Models (DEMs)
collected using the Microsoft Representational State Transfer (REST) Applica-
tion Programming Interface (API). We use REST to sample altitude values
over a 1,000-by-1,000 grid covering the entire respective MSA areas. Sample
points are joined to census tracts using tract boundary data from the Cen-
sus Bureau’s Topologically Integrated Geographic Encoding and Referencing
(TIGER) database, with a sampling density of 1,114.4 observations per tract.3

Elevation variance of a given tract is estimated as the variance of all internal
altitude samples. We present an example of the elevation sampling and the
spatial distribution of elevation variance with data from Boston in Figure 1.4

2The DC MSA is the largest in the dataset because it spans both Maryland and Virginia, in
addition to the District of Columbia area.

3Since variance across sample points is a per-area metric, there is no inherent bias toward
higher elevation variance for larger tracts. Larger tracts nonetheless tend to be on the
periphery of MSAs, which coincides with areas of higher variance. This also means that
given the high sampling density, our measure of elevation variance is comparable across
tracts in different MSAs, despite the fixed total resolution of samples.

4Two more examples (San Francisco, Washington DC) are provided in Figures A3 and A2.
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Figure 1: Elevation contour and elevation variance spatial distribution, Boston

Elevation sample points at the local water level are omitted.5 We also ex-
clude census tracts with less than 20 total elevation samples from the dataset,
resulting in a total of 14,141 tracts in the merged dataset: this is approximately
19.2% of all 2010-boundary US census tracts or 30.1% of all urban tracts. To
provide a consistent estimation of altitude across different MSAs, we transform
altitude data by standardizing at the MSA mean (meters above or below the
MSA average). Figure 2 provides boxplots of elevation variance distribution
across dataset MSAs, and Figure A1 presents boxplots for tract (nominal) alti-
tude.

5The local water level is approximated by the minimum altitude value for the MSA. For
coastline cities, we omit all elevation samples that round to a sea-level altitude of 0.
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Figure 2: Boxplot of log elevation variance, all dataset MSAs

REST is also utilized to generate distance and time estimates by driving from
each census tract to their respective CBDs.6 While not all residents in all tracts
regularly commute to the center, proximity to the CBD is highly correlated
with a rich variety of spatial amenities. Distance to center is also a proxy for
valuing marginal housing consumption versus marginal costs of commuting of
local households: downtown residents are more likely to trade housing for low
commuting costs while the opposite holds for suburban residents. By controlling
for monocentricity, we account for these preferences in the simulation.

Finally, we construct tract coastline distance variables for coastal dataset
MSAs, defined as MSAs where the tract nearest to the coastline is less than
2km away, using National Oceanic and Atmospheric Administration (NOAA)
coastline profiles and calculate tract distances to the coastline.7 Distances are
estimated from respective tract centers to the nearest point on the coastline.

3.2 Model and Simulation

Our structural specifications and simulation model are based on the neigh-
borhood sorting framework proposed by Bayer, McMillan and Rueben (2004)
and developed in Bayer and McMillan (2005). Households are categorized by
10 income bins matching respective income deciles of the entire dataset. It is

6The default choice among route alternatives is shortest driving time. The shorter route is
chosen if driving time is identical to the minute. For consistency, all driving times assume
no local traffic.

7See NOAA definition for “coastline”. http://shoreline.noaa.gov/glossary.html
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crucial that bins are matched to the household income distribution of the en-
tire dataset and not individual MSAs, since distributions of household income
vary substantially across cities, and matching income bins to individual MSAs
results in bins that are not comparable across MSAs.8 Since ACS does not
report cumulative densities by income decile, we linearly interpolate between
ACS reported income brackets to estimate the CDF of households by income in
each tract.9

Each simulated household’s income is assigned by fitting the MSA-level cu-
mulative income density function to a Burr distribution (Burr 1942). For each
MSA, income values are drawn from this distribution and, according to income
bin boundaries, allocated to simulated households. We further assume that
households are of a single ethnicity and not specifically renters or owners. Ad-
ditionally, all households in a particular income bin have identical preference
functions over the quality of neighborhood amenities.10

For each income bin i, a household living in census tract t is assumed to
derive utility over residential location choices from a composite tract housing
stock quality variable Ht = α1h1t + α2h2t + . . . , housing expenditure Pt, and
tract level of terrain unevenness Tt.

11 The household also derives utility from
“unobserved” amenities not reflected in the quality of housing stock (e.g. school-
ing, parks, quality of restaurants), reflected in the tract median income level Īt,
and a trade-off between tract-specific per-unit-cost housing consumption and
expected commuting cost, approximated by the driving distance to a central lo-
cation, which we term downtown, Dt. Correspondingly, we specify the following
log utility function:

Uit = β1i log(Pt) + β2i log(Īt) + β3i log(Tt) + β4i log(Ht) + β5i log(Dt) (1)

Since the residence location decision of any individual household is not ex-
pected to significantly influence either the market-clearing price or median tract
income, the marginal household for a specific income bin take as given the en-
dogenously determined price Pt and Īt. The household chooses to locate in

8Our matching approach does result in unbalanced bins at the MSA level. However, this does
not adversely affect the simulation as groups optimize taking tract-level prices and amenities
as given, assuming that no individual bin is too small to significantly influence demand in at
least some tracts.

9The number of households in each bin is rounded to whole households. When rounding leads
to the total tract household count exceeding or becoming less than the original value, the
bin that is rounded upwards or downwards the most is rounded in the opposite direction.

10Since both race and ownership are highly correlated with household income, it may be useful
to think of households within each income bin as being a similar composite of races and
renter-versus-owner status. However, we do not explicitly allow for such sorting mechanisms
in the simulation model to reduce computational complexity. Concurrent racial sorting,
along with housing stock aging and gradual expansion of the MSA, are topics for subsequent
analysis.

11ht variables represent specific aspects of housing stock quality such as fraction of single
owner units and age composition of units.
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the tract where the endogenous amenities, in combination with fixed amenities
such as terrain, housing stock quality and distance to downtown, provides the
greatest amount of utility among all tracts within the MSA.

As is often the case in Dynamic Discrete Choice models, as pioneered by
Pakes (1986), we estimate the parameters of equation (1) by assuming that
the deviation of log shares represents utility derived from each unique choice
of tract. Specifically, we assume that the deviation of income bin i’s log share
in each tract t, log(Sit), from the log share of tract t’s household count of the
MSA, log(Smsa

t ), is a representation of i utility derived from tract t, Uit, plus a
stochastic, EVT1 component εit. Intuitively, the ratio Sit/S

msa
t represents how

desirable (or undesirable) a tract is for a particular income bin as a deviation
from the “average” level of utility that the income bin derives from the MSA.
Hence, the tract-bin specific estimating equation is:

log(Sit/S
msa
t ) = β1i log(Pt) + β2i log(Īt) + β3i log(Tt) + β4i log(Ht) + β5i log(Dt) + εit (2)

Solving this equation for each MSA and income bin within an MSA yields
MSA-bin-specific preferences for each specific amenity. To construct a single
measure of housing stock quality Ht, we use a number of control variables in-
cluding fractions of housing units by bedroom count, fraction of single-household
detached homes, fraction of owner occupied units, fraction of mobile homes as
well as vacancy and the age distribution of tract housing stock. Dt is charac-
terized by driving time to the CBD, and Tt is characterized by tract elevation
variance, tract relative altitude, and the interaction between the two variables.

Instead of allowing discrete choices over tracts, we assign household loca-
tional choices fractionally by a multinomial distribution over all tracts with
weights determined by relative log utility derived from each tract.Specifically,
the fraction of a household hi in tract t is given by:

Frachit =
log(Sit/S

msa
t )∑

t log(Sit/Smsa
t )

(3)

where the denominator sums over log share ratios of i across all tracts within
the MSA. A significant issue with updating entire households is that the response
to small changes in a tract’s bin-specific utility may result in large changes to
the tract’s composition of households, greatly restricting the speed at which
the model can be solved. Using fractional updates, entries and exits into tracts
always happens at the margin, allowing for faster, smoother updating and less
need for scaling up the model to real-world sizes.

Prices clear markets. In our model, the amount of housing supply for each
tract is fixed. Hence, prices are driven solely by fluctuations in demand. We
adjust price incrementally upwards in oversubscribed tracts and downwards in
undersubscribed tracts until each tract recovers, precisely, the original number
of residing households. Since the total number of households in the simulation
is always preserved by the aforementioned updating process, at the market-
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clearing state each tract should have exactly as many households as in the
original data. We note that this implies that the price sensitivity term, β1i,
must be strictly negative for all income bins. Otherwise, prices adjust upwards
perpetually and some tracts remain oversubscribed.

Tract median income is estimated as the income of the household whose
fraction straddles the 50th percentile of the income CDF.12 Intuitively, prefer-
ences for this value are likely to be strictly positive for households with income
levels substantially above the MSA-level average, as rich households should not
dis-prefer their own marginal move-in effect on a neighborhood. It is possible
that poor households see such amenities as either desirable or undesirable, de-
pending on the strength of the amenity effect relative to the desire of households
to match their budget with neighborhood amenities.

We perform the counterfactual simulations by first running each MSA’s
model to its steady state, defined as the point when the maximum deviation
between current and previous-iteration prices and tract median incomes among
tracts is less than 0.5%, and markets clear to within 0.5% of each tract’s ex-
pected number of simulated households. After performing changes specific to
a particular counterfactual, we then continue to iteratively update the model
until a new steady state is reached.

3.3 Computation

The primary challenge in estimating preferences for locational choice is the
strong correlation between prices and the quality of a neighborhood, including
both observable and unobservable amenities. In a regression model, it is un-
certain that explanatory power will be correctly distributed between different
preferences, potentially resulting in price preferences being biased upward or
downward and leading to unrealistic simulation steady states. A related con-
cern is that ACS does not report prices faced by each income bin. Consequently,
our price sensitivity measures are in effect not sensitivities to actual prices ex-
perienced by each income bin but bin-specific sensitivities to prices which are
reflected by movements of the tract median price.

This distinction has significant implications for the model. Low-income
households experience prices significantly below the tract median, facing less
than unit change in the actual price for housing when the median changes.13

Conversely, rich households face greater than unit change when the median
changes by one unit.14 The regression model does not perfectly capture this

12In the case that fractions add up to exactly 0.5, the lower income of the two households
closest to 0.5 in the CDF is used.

13This is because if we consider prices of units in each tract as distributed roughly log-
normally, the density center of the truncated area below the median does not respond
linearly to changes of the median.

14This also means that it is ambiguous as to whether rich or poor households actually display
greater price sensitivity to changes in tract median prices, even though rich households are
less sensitive to changes in the nominal price.

12



distinction, and is biased in its estimations of price sensitivities. Performing
the simulation using preferences extracted from OLS results in market-clearing
prices that are unrealistically high: many tracts do not clear until prices are
200-1,000 times higher than the maximum price in the original data.

Our solution to this issue is threefold. First, we use an iterative calibration
approach to estimate preferences for price, β1, by adjusting preferences until
the simulation steady state aligns with distributions in the census data over a
set of targets. To avoid the possibility of the starting guess of price preferences
influencing the calibrated preferences, we initialize the model with an extremely
small price sensitivity of -0.05 for the richest income bin. To prevent divergent
sequences of guesses, we adjust this value downward slightly for other bins,
increasing the sensitivity according to relative tract average prices experienced
by each bin.15

Calibration targets are tract median prices and income levels by income
bin: each value is estimated as the average for all households in the bin or 20
targets in total per MSA for the 10 income bins.16 We increment β1i by each
bin according to the amount of deviation between average prices experienced
by each bin in the simulation steady state and that of the data. An income bin
i facing prices that are overall too high implies that β1i is biased upwards, i.e.
not sensitive enough and need to be decreased, and vice versa.

When calculating prices, we omit the top 0.5% of tracts by price to pre-
vent tracts that are persistently expensive from driving the calibration process.
Tracts can become resistant to changes in price sensitivities for a number of
reasons not easily addressed in the simulation: scaled-down small tracts being
fully subscribed by large fractions of a few simulated households, data errors, or
large local amenity bundles (e.g. cultural landmarks, museums) that cannot be
accounted for through tract income alone. This procedure yields substantially
smoother updating at the cost of only a small fraction of tracts: the maximum
number of MSAs not accounted for is 6 tracts for Washington, DC.

New β1 guesses are proposed using Newton-Raphson with cross-partials as-
sumed to be zero. After obtaining new guesses for β1, the remaining preferences
– tastes for unobservables, elevation, housing stock, and distance to center – are
estimated with a regression model with β1 treated as a fixed coefficient. From
this set of new preferences, we re-run the simulation, and the process iterates
until the steady state is reached. Hence, the model is iteratively calibrated until
all targets fall within 10% of the original data, which we consistently achieve
across all dataset MSAs.

Instead of calibrating preferences for unobservables, β2i , by iterative incre-

15These values are estimated by taking shares of each bin in each tract and obtaining share-
weighted housing prices for all bins. Assuming that the richest decile faces an average price

of P 10, decile i’s initial price sensitivity is set to −0.05 · P
10

P i .
16For example, a household with the same fraction assigned to n tracts experiences price and

tract income that are the simple averages of those of all n tracts. Households in each bin
are then averaged to derived the average price and tract income experienced by each bin.
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mentation, we estimate β2i ’s directly from the regression. However, we compare
tract median incomes experienced by each bin in the steady state against that
of the data, and use the deviations as clearing conditions. The calibration is
not stopped until both targets for prices and tract median incomes clear at the
10% level. If, in the calibrated steady state, bins experience prices that align
with the data but live, on average, in neighborhoods that are too rich or too
poor, then it is likely that the β1 values are systematically mis-calibrated. On
the other hand, income and price targets being simultaneously met when we do
not specifically calibrate against the former suggests that model is being cor-
rectly parameterized. A flowchart summary of the entire calibration procedure
is presented in Figure 3.

Figure 3: Outline of calibration and simulation procedure

Our second solution component is that we exploit higher moments of the
MSA-level price distribution to discipline the convergence process. Intuitively,
preferences that are well-calibrated should not result in prices in the steady state
that are far above the maximum or below the minimum price observed in the
data. To this end, we increment price sensitivities for all income bins upward
by 2% whenever the price of the most expensive tract in the simulation steady
state exceeds 1 standard deviation above that of the most expensive tract in
the data.17

If no tracts are more expensive than the most expensive tract and the cheap-
est simulated tract is less than half as expensive as the cheapest dataset tract,

17This adjustment, if applicable, occurs concurrently with new guesses for β1, and is applied
to the new set of guesses before the next calibration iteration.
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we decrease sensitivity by 2% for all bins. Correspondingly, we check maximum
prices when determining whether the model has been successfully calibrated.
The clearing threshold is set as the price of the 99.5th percentile most expen-
sive simulated tract not exceeding 1 standard deviation of that of the 99.5th
percentile dataset tract.18

The final component of the solution is that we substitute OLS with a LASSO
regression model (Tibshirani 1996) with a λ parameter obtained by 20-fold cross
validation. The LASSO or L2 penalization regression optimizes for predictive
performance by penalizing all coefficients toward zero, and a subset of coeffi-
cients to exactly zero. In effect, the process assumes that some parameters of
the model are too small to be meaningfully distinguished from zero, and set-
ting them to exactly zero optimizes predictive power. Hence, LASSO prevents
the model from overfitting and extracts more generalizable preferences, which
is highly desirable from the perspective of a structural model.

While somewhat complex, this three-fold approach results in rapid conver-
gence of the steady state with respect to calibration targets: in the baseline
model, all 25 MSAs hit price and tract income level targets within 10% tolerance
and satisfy maximum price conditions within 300 calibration iterations.19 Ad-
ditionally, the elevation gradient-income relationship is well behaved despite not
being explicitly calibrated, with the average absolute deviation between steady
state and original data expected elevation variance being only 3.0% across all
bins in all MSAs in the steady state.20

Relative altitude is also well-recovered in the calibrated steady state, albeit
slightly less so than variance. Among MSA-income bins that on average live
more than 10 meters away from the MSA average altitude, the average absolute
deviation is 7.5% and the maximum deviation 25.5%.21 These results suggest
that our calibration procedure is successful in allowing the simulation to reach
a steady state that is well-behaved with regard to real-world distributions of
income, prices, and locational choice by elevation gradients, and by extension
extracting relatively useful estimations of income bin-specific preferences.

Specifically, we set a scaling level for number of simulated households that
allocates at least 1000 simulated households to the smallest income bin in a given
MSA. This yields a total of 369,111 simulated households at an average scaling
ratio of 133.1 real households per simulated household. To ensure convergence of
the tract median income targets, we scale all simulated household incomes by a
fixed factor so that the average of simulation steady state tract median incomes
equals exactly the average of the data. This adjustment does not introduce any
restrictions on sorting choice but simply guarantees that if one bin lives in tracts

18Standard Deviations are calculated from dataset price distributions.
19Specifications of different counterfactuals are discussed in detail in Section 4.
20SD = 3.0%. Both mean and standard deviation weighted by MSA-income bin sizes. The

maximum deviation is 14.4% and 11 out of the 250 MSA-bins have a deviation of greater
than 10%.

21Maximum absolute deviation for MSA-income bins that live in tracts less than 10 meters
away from the MSA average altitude is 8.4 meters, and average abs. deviation is 0.73 meters.
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that are richer than they do in the original data, at least one other bin must
live in tracts that are poorer.

We also standardize prices to the average of all tracts’ median prices after
every new guess of prices. Conceptually, since prices adjust to clear markets,
uniformly increasing or decreasing prices everywhere should not affect the sort-
ing equilibrium or relative preference of each income-bin. Similar to the stan-
dardizing of incomes, this process guarantees that if one bin lives, on average, in
more expensive tracts, one or more other bins must on average live in cheaper
tracts.

To prevent the simulation from potentially being stuck in local optima, we
update substantially more aggressively for the first 20 iterations in each simu-
lation run. For each new guess of preferences or “calibration iteration”, we also
do not allow the simulation run to stop until reaching 150 iterations, even if
the market clearing conditions have been reached. We use a maximum of 800
iterations for each calibration iteration (except the final one) and move to new
preference guesses if the model has not converged by iteration 800. All MSAs
converge with the final set of preferences before this limit is reached.

4 Results

4.1 Flattening Cities

Our first and primary counterfactual scenario estimates the effect of flatten-
ing elevation gradients assuming fixed tract-specific housing stock. As described
in Section 3, we assume that spatial amenities - the presence of water areas, dis-
tance to the coast and costs of commuting to the CBD - as well as tract-specific
housing stock quality variables such as the structure composition and age of
units, are fixed for all tracts. However, unobserved amenities adjust with local
income levels. In other words, it is assumed that rich households are able to
bring a certain amount of non-spatial local amenities with them as they re-sort
but cannot alter the quality of the local stock of housing itself.

Preferences extracted from the target-cleared steady state under these as-
sumptions are presented in Table 2.22 Tastes for tract median income are gen-
erally more positive for higher income bins, and unobservables are strictly an
amenity for almost all bins across MSAs. Similarly, richer households are less
sensitive to prices. The richest households are approximately twice as sensitive
to changes in unobserved amenities, as reflected in log tract median income, and
half as sensitive to changes to housing prices as the poorest households.

22Price and income preferences by MSA and income bin are provided in Tables A1 and A2.
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Table 2: Select preferences averaged across MSAs, baseline model

Decile 1 2 3 4 5 6 7 8 9 10

median price23 -0.425 -0.412 -0.407 -0.390 -0.368 -0.351 -0.342 -0.306 -0.274 -0.220

median income 0.171 0.186 0.250 0.297 0.306 0.329 0.343 0.317 0.332 0.396

elev variance 0.028 0.016 0.020 0.016 0.009 0.008 0.008 0.014 0.026 0.037

relative altitude -0.012 -0.005 -0.004 -0.002 -0.001 0.001 0.007 0.015 0.023 0.028

elv-ral interaction 0.001 0.000 -0.000 -0.000 -0.000 0.000 -0.001 -0.002 -0.002 -0.002

CBD Drive dist 0.114 0.142 0.118 0.094 0.075 0.040 0.022 -0.020 -0.133 -0.338

Income cutoff ($) 14,556 25,948 37,387 49,486 62,984 79,013 98,617 124,974 179,410 -

Elevation preferences are weakly upward sloping with respect to own in-
come. Preferences for altitude is positive for rich households and negative for
poor households, consistent with findings of Ye and Becker (2018) that flat-
ness and low altitude may be an amenity to the poor because of walkability
and access to public transit. While the bottom income deciles prefer elevation
variance more strongly than middle class households, this effect is dominated by
preferences for altitude for tracts that are above the MSA average altitude. The
altitude-variance interaction is small overall and negative for rich households.
We speculate that the interaction reflects diminishing returns to living in par-
ticularly high-altitude and low-lying areas for the rich and poor, respectively,
though this effect does not appear to be significant for most MSAs.

Finally, a downwards-sloping preference to driving time to the CBD suggests
that the rich have higher costs of commuting, holding marginal consumption
of housing fixed. This is consistent with the general monecentric city model
pattern of the rich either suburbanizing, where per-unit-area cost of housing
drops sharply and households can trade commuting costs for large quantities of
housing, or residing at the very center, where commuting costs are the lowest.

We perform the counterfactual by gradually reducing the log elevation vari-
ances and relative altitudes for all tracts to zero over 50 iterations. The post
and pre-counterfactual steady-state differences between expected tract median
prices, income levels, driving distance to CBD’s and elevation variance levels
are presented in Figure 4.24 Importantly, expected elevation variance in this
figure is estimated at the original data’s elevation variance levels, or otherwise
expected variance would be exactly zero in the counterfactual.

23Tract median prices, incomes and elevation variance logged. We add 1 to all values so that
setting the log value to zero is equivalent to zeroing the value. Driving distance to CBD in
km is also logged. Relative altitude is per 10-meter increment. Cutoff of own-group income
in 2015 dollars.

24Values are percentage changes to each bin caused by the counterfactual. Each household’s
expected price and tract income is estimated as the mean across tracts weighted by location
choice fractions. Values for households in each bin are averaged again to calculate differences.
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Figure 4: Counterfactual outcomes from flattening cities by income decile.

In the counterfactual, the top income bin’s expected tract median income
falls by approximately 1.4%, and the bottom bin’s expected tract median income
rises by approximately 0.6%. All bins above the dataset’s median income level
live in poorer tracts in the counterfactual. Prices fall for rich income bins and
rise for poor income bins : the top bin lives in tracts that are approximately
1.6 % cheaper, and the bottom bin lives in tracts that are 2% more expensive.
Additionally, the rich move away from the suburbs when cities are flattened:
the top decile lives approximately 1.4% or 0.5 km closer to the center in the
counterfactual.25

Changes to the pattern of income distribution by elevation variance and
altitude are much larger. In the counterfactual, the top decile lives, on average,
in tracts that were, pre-flattening, 30% flatter and deciles 1 through 4 all live
in tracts that were more than 10% hillier. Households in the top decile live in
tracts that were 7.5 meters or 69.5% lower in altitude, and households in the
bottom decile live in tracts that were 1.4 meters higher in altitude.

Strikingly, the gradient of own group income against elevation variance is
almost completely reversed in the counterfactual. The top deciles live in the
flattest areas in the counterfactual while in the initial steady state and the
original data they live in the most uneven (measured at the pre-counterfactual

25We choose to not report welfare effects here because of the difficulty in contrasting an
estimate of welfare across MSAs with both different scaling and unbalanced income bins.
However, this would be an interesting topic for subsequent analysis.
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level). The gap of 19.7 meters between the expected relative altitude of decile
10 and decile 1 shrinks to only 8.5 meters, and in the counterfactual decile 10
no long lives at higher altitudes than deciles 7-8. We present plots of relative
altitude and elevation variance gradient by income level in Figure 5.26

Figure 5: Relative altitude and elevation variance gradient by income level,
flattening cities

The story is best illustrated by observing the differences in cross-decile expo-
sure between the counterfactual and the initial steady state, where the exposure
of decile i to to decile j is the expected fraction of households in decile j, in
the average tract, for the average decile i household. We present the percentage
difference between cross-decile exposure of the counterfactual and the initial
steady state in Table 3. Here we observe that exposure to the top and 9th
decile go up for deciles 1 to 6. The poorest decile expects to live with 3.9%
more households in the top decile, and 2.6% more households in the 9th decile.

Correspondingly, self-exposure of the top income bins drop. The top 10% of
households by income live with 3.6% fewer households in their own group and
2.8% fewer households in the 9th income decile. We note that, consistent with
Figure 4, deciles 1-5 gain by being exposed more to richer bins and less to poorer
bins. In decile 1’s case, exposure to deciles 1-5 drops while exposure to deciles 6-
10 rises. As rich households cease to concentrate in high-altitude, high-variance
areas, they sort into locations with larger fractions of low-income households.

26Expected relative altitude is not perfectly centered at zero because we do not weight tracts
when we calculate MSA average altitude, but weight tracts by number of households when
calculating expected altitude levels.

27Differences are estimated as (counterfactual - initial )/initial. Note that cross-decile expo-
sure matrix is symmetric.
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Table 3: Average percentage difference in cross-decile exposure between
counterfactual and baseline, flattening cities27

Decile 1 2 3 4 5 6 7 8 9 10
1 -1.04 - - - - - - - - -
2 -1.02 -0.78 - - - - - - - -
3 -0.74 -0.70 -0.52 - - - - - - -
4 -0.52 -0.52 -0.49 -0.38 - - - - - -
5 -0.25 -0.25 -0.27 -0.24 -0.10 - - - - -
6 0.07 0.01 -0.09 -0.13 -0.10 -0.11 - - - -
7 0.45 0.31 0.17 0.07 -0.03 -0.13 -0.18 - - -
8 1.27 0.98 0.72 0.47 0.14 -0.11 -0.33 -0.59 - -
9 2.57 1.94 1.50 1.05 0.46 0.00 -0.42 -1.17 -1.73 -
10 3.85 3.13 2.44 1.98 0.98 0.36 -0.21 -1.42 -2.81 -3.60

Prices fall for the rich as they sort among a larger group of tracts and no longer
compete for hilly tracts. As the rich enter poorer neighborhoods, competition
increases in these neighborhoods and prices are bid up. Additionally, the rich
centralize as cities are generally more hilly in the suburbs than at the center.

The outcome of rich households living in even flatter areas than the poor in
the counterfactual is most likely caused by elevation variance being negatively
associated with high quality housing stock and neighborhood amenities. Cor-
relation is positive and significant between elevation variance and median age
of structure (0.049), fraction of mobile homes (0.104), as well as the fraction
of homes with five or more bedrooms (0.029).28 While we do not have data
for schools and recreational facilities, one would also expect them to locate in
flatter areas because of lower construction costs, all else being equal. This effect
also draws the poor to uneven areas in the counterfactual, as the same housing
stock qualities are potentially an amenity to the poor.

4.2 More Mountains

Our second, “reverse” counterfactual simulation uses the same initial steady
state and procedure as the first, but with one major distinction: instead of grad-
ually setting elevation variance and relative altitude to zero across 50 iterations,
we gradually adjust both values to twice that of the original data. Conceptually,
this means that for a given MSA, we not only make every tract twice as uneven
in terms of variance but also the entire distribution of tract altitudes twice as
varied: low-lying areas are twice as low-lying and vice versa.

Post- and pre-counterfactual steady state differences are presented in Fig-

28All correlations report p<0.001. We note that while more bedrooms are typically an amenity,
homes with more than 5 bedrooms are either of extremely high quality or have been con-
verted to multi-family use, the latter of which is associated with low neighbor income.
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ure 6, corresponding to Figure 4 in the previous counterfactual. Plots of relative
altitude and elevation variance gradient by income level are presented in Fig-
ure A4. Similar to Figure 4 we calculate expected elevation variance and altitude
at original dataset levels instead of doubled levels.

Figure 6: Counterfactual outcomes from doubling elevation variance and
relative altitude by income decile.

The richest decile see an increase of approximately 1.2% in tract median
income and the poorest decile sees a decrease of 0.5%. Deciles 1 to 4 live in
poorer neighborhoods and deciles 5 to 10 in richer ones. Top earners must pay
more for living in richer areas: prices are bid up 3% for decile 10. The rich
suburbanize, with the top decile moving 1.2% further from the center. Change
to expected elevation variance and altitude is concentrated in the top income
decile: they live in tracts that are 10.2% more uneven and 4.6 meters higher
in altitude. Decile 9 also lives in higher altitude locations (0.8 meters) but
experiences very little change in expected variance (-0.6%).

Cross-decile exposure is presented in Table 4. The outcome is the opposite
of the flat city scenario: own-group exposure of the 10th decile increases by
3.1% while exposure to decile 10 of decile 1 decreases by 2.2%. The richest
households select themselves into uneven tracts, sorting away from all other
groups and increasing income stratification at the MSA-level. While the effect
is most significant for the top 20% of households against the remaining 80%,
lower-income households also sort among themselves, with exposure to adjacent
deciles rising for all groups.
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Table 4: Average percentage difference in cross-decile exposure between
counterfactual and initial steady state, doubling elevation variance and relative

altitude

Decile 1 2 3 4 5 6 7 8 9 10
1 0.90 - - - - - - - - -
2 0.59 0.50 - - - - - - - -
3 0.52 0.46 0.51 - - - - - - -
4 0.35 0.36 0.39 0.34 - - - - - -
5 0.12 0.14 0.20 0.19 0.17 - - - - -
6 -0.07 0.05 0.11 0.14 0.14 0.17 - - - -
7 -0.37 -0.17 -0.11 -0.01 0.08 0.17 0.22 - - -
8 -0.84 -0.58 -0.52 -0.30 -0.04 0.12 0.28 0.58 - -
9 -1.55 -1.03 -1.07 -0.74 -0.36 -0.16 0.18 0.66 1.39 -
10 -2.19 -1.80 -1.80 -1.43 -0.88 -0.74 -0.25 0.52 1.86 3.12

These results strongly contrast those of Section 4.1. When cities are flat-
tened, rich households in the top 10%-20% of earners suburbanize, mix with
poorer households, move to relatively flatter areas and, by not competing for
unevenness and high altitude areas, enjoy lower equilibrium prices. On the other
hand, when we introducing greater unevenness, rich households concentrate and
compete for hilly locations, causing other groups to both live in poorer areas
and face lower prices.

4.3 Endogenous Housing Stock

Thus far, we have assumed that households cannot influence the composition
of neighborhood housing stock in the sorting process. As an extension, we
relax this assumption to estimate the size of elevation gradient effects when
neighborhood amenities are completely reflected in neighborhood income level.
In other words, in addition to exerting influence on non-housing attributes such
as school quality, restaurants and crime rates, households determine all non-
spatial amenities associated with the neighborhood and can modify the type
and quality of local structures to maximize utility.

We conduct this exercise for two reasons. First, a realistic static simulation of
neighborhood sorting would incorporate some flexibility of housing stock quality:
age of structure is not a perfect reflection of unit quality, and units can be
meaningfully improved even in the very short run. By locking down housing
stock quality, we disallow such changes and constrain how strongly households
can respond to movements in neighborhood income. Hence, our counterfactual
outcome in sections 4.1 and 4.2 underestimates the general equilibrium effects
associated with altering elevation profiles. Fully flexible housing stock as we
assume in this section, on the other hand, overestimates but provides an upper
bound to the problem.
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Second, we do not explicitly calibrate preferences for housing stock quality
in the simulation and take the regression-estimated housing stock quality prefer-
ences as given. Running the simulation without housing stock variables provides
an external check of the sensitivity of our previous results to the method of de-
riving these preferences. Results that are substantially inconsistent with the
previous sections would suggest that such preferences are mis-estimated.

Specifically, we calibrate and simulate dataset MSAs using the same setup
as 4.1-4.2, but without any housing stock quality variables in the set of house-
hold preferences. We fully calibrate the model from the same initial guesses as
described in Section 3.3. This is because households preferences are relative not
only to those of other deciles but also preferences for other goods, and hence
loading the quality of housing stock onto tract median income necessarily re-
quires new preferences and sensitivities for all groups. We use the same clearing
conditions and, similar to the original setup, all MSAs clear expected prices and
tract income level targets within 200 calibration iterations.

Results for the “flat cities” and “more mountains” counterfactuals without
constraining housing stock are summarized in Figures A5 and A6, respectively.
Figure A7 and A8 contrasts relative altitude and elevation variance gradient by
income level with and without fixed housing stock quality. In the new flatness
counterfactual, the richest decile experiences a greater drop in expected tract
income (2.1% instead of 1.4%), pays more (3.2 %) instead of less for housing,
centralizes more strongly by living a further 0.5% closer to the CBD, and still
lives in much flatter and lower altitude areas compared to the original data.
Notably, the richest decile centralizes - they now live in locations that have the
lowest average elevation variance and lower than MSA-average altitude.

Higher prices for the rich are consistent with the rich being a greater amenity
to the rich when we endogenize housing stock quality. When cities are flattened,
the rich face two price effects: that of demand decreasing among themselves in
originally highly uneven and high-altitude tracts and that of demand from the
poor increasing in such tracts. When housing stock quality is endogenous, both
the rich and poor face fewer inherently desirable or undesirable locations and
experience larger demand changes in response to flattening the city. If this
response to demand is proportionately much larger for the rich, the effect of
rich households moving out of previously uneven areas will dominate that of
poor households sorting into such areas. It follows that prices adjust upwards
in tracts to which rich households relocate.

Income changes, price changes and location choice relative to the CBD in
the reverse counterfactual with endogenous housing stock are consistent with
those without: when cities are twice as uneven, rich households suburbanize,
live in richer neighborhoods and pay higher prices. However, we observe that
rich households live in flatter neighborhoods on average while the poorest decile
live in much more uneven tracts (as shown in Figures A6 and A8). Both the
richest and poorest decile live in areas that are higher altitude, although the
direction of the altitude-income relationship is largely preserved.
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The reason for the bottom, and only the bottom decile experiencing much
more uneveneness in this counterfactual is that a fraction of the poorest house-
holds are crowded out, from the center, into tracts that are far away from the
center, cheap and highly uneven. This is reflected in the poorest decile living
both about 1% further away from the CBD on average and approximately 5
meters higher in altitude. It is important to note that the top decile is not the
group that pushes the poor away from the CBD, but the 3rd to 9th deciles,
as illustrated in Figure A6. As the top income bin sort much more strongly
among themselves and occupy tracts that have the most desirable combination
of elevation and spatial amenities, the upper-middle and middle class move into
the center, and a fraction of the poorest are forced out into the far suburbs.

This result is in contrast to that of Section 4.2 as shown in Figure 6, where
the bottom decile centralizes and experiences virtually no change in expected
elevation variance. When housing stock is fully endogenized, preferences for lo-
cal amenities - housing stock quality included - is represented entirely by price
sensitivity and tastes for tract median income. Now, the richest decile, effec-
tively being able to adjust local housing quality at will, is further differentiated
from other income groups. Hence, they sort along with households in the 7th-
9th decile when housing stock quality is exogenous, but sort away from them
when such preferences are endogenized. The difference in outcomes of the poor-
est income bin follow as they occupy locations that are less desirable to richer
households.

4.4 Supply Side Effects

To provide contrast to the demand-side effects of Sections 4.1-4.3, our final
counterfactual exercise studies the supply-side consequences of elevation gra-
dients. Specifically, we simulate the mechanism discussed by Saiz (2010) and,
more recently, Baum-Snow and Han (2019), where unevenness leads to higher
costs of construction and particularly so for multi-unit structures, larger plots
and lower utilization of land, all of which are amenities to the wealthy and
disamenities to the poor. Conceptually, the most straightforward approach to
addressing this question would be to adjust housing quality in each tract toward
an MSA-level average, while keeping elevation gradients unchanged.

However, we cannot simply simulate a “flattening” of housing stock qualities
as a direct parallel to Section 4.1. This is for three reasons. First, our calibrated
utility function assigns far greater importance - as it should - to the combined
effects of housing stock variables compared to elevation gradient effects. This is
fairly intuitive, since households are likely to heavily value the local types and
quality of structures as a direct proxy to that of their own residence. Yet it
also implies that large changes to the relative levels of amenities in each tract
introduce drastic shifts to the MSA-level sorting equilibrium.

Second, the level of homogeneity among tracts is massively increased by
setting a uniform level of housing stock quality throughout each MSA. Hence,
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the counterfactual simulations are prone to experiencing multiple equilibria is-
sues that are not observed when flattening elevation gradients. Third, as rich
households tend to reside in the suburbs and CBDs are (usually) located in the
flattest parts of an MSA, one would expect to see some correlation between
housing stock quality and elevation gradients even if there is no direct effect of
elevation on housing stock. This implies that any counterfactual that reduces
the correlation coefficient between elevation and housing stock quality to exactly
zero overstates the importance of elevation gradients.

Our solution to these issues appeals to the fact that the utility that each
income bin derives from housing stock is influenced by the monocentricity of
the MSA. For example and very generally, downtown areas have more units
per structure, older housing stock, and units with fewer bedrooms. However,
adjusting for distance, the relative amount of utility provided by each location
differs. This variation introduces variance among income levels of tracts at any
given distance to the CBD. Hence, we break down the utility that each income
bin derives from the single measure of housing stock quality:

UHit
= βi log(Ht) = βi log(α1h1t + α2h2t + . . . )

Into two components:

UHit
= ÛHit

+ εHit

Where ÛHit
represented the predicted utility that a household in i should derive

from tract t given its distance to the CBD, and εHit represents the t-specific
amount of utility beyond or below ÛHit

. We extract these components respec-
tively by the predicted values and residuals of an OLS regression between UHit

and log(Dt), log driving time to the CBD. The residuals are hence interpreted
as the level of utility (or disutility) that t provides to i controlling for Dt. We
then perform the counterfactual simulation by randomizing εHit

over all tracts
within each MSA.

This approach has three advantages. First, the presence of ÛHit preserves the
monocentricity of the MSA by allowing rich households to derive more utility
from bundles commonly found in the MSA’s periphery and vice versa, and
hence limits the extent to which the new sorting equilibrium differs from the
baseline. Second, the overall amount of variance among - in other words, shape
of distribution of - utility derived from housing bundles within the MSA is also
preserved, ruling out the possibility of one or a few tracts incurring market
clearing problems because of an extreme excess or lack of demand.

Third, the counterfactual remains a direct analogy to the altering of elevation
gradients discussed earlier in this section. In the case of sections 4.1 and 4.2,
housing stock quality is held constant while elevation gradients are altered with
regard to a given overall target level (zero or twice as much). Here, elevation
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gradients are unchanged but we permute the utility derived from each tract’s
housing stock with regard to a distance gradient that is smooth across space.

We note that the counterfactual outcome is still likely overstated. Other
natural amenities (lakes, rivers, coastal views) correlate with both elevation
gradients and high quality housing stock, and the permutation approach re-
moves the relationship between such amenities and housing stock quality. In
addition, our simplified regression approach may not capture distributions of
utility derived from housing stock with multiple local optima(the very rich pre-
ferring to either be extremely close to the center or quite far away), which would
potentially result in the residual component being over-estimated.

The income sorting effect on inequality of this counterfactual, as presented
in Figure A9, is roughly comparable to that of flattening the city with endoge-
nous housing stock, and slightly above that of flattening the city with fixed
housing stock. The top income bin lives in tracts that are 2.2% poorer and
the bottom bin lives in tracts that are 1.5% richer. However, the price effect is
quite large - approximately 50% higher for households in the top income decile
- as a consequence of the rich bidding intensely for a few select locations where
elevation variance and good housing stock bundles still exist simultaneously
post-randomization.29 The top decile live in tracts that are 20% flatter, and the
bottom decile in tracts that are 15% hillier.

Table A7 summarizes cross-decile exposure of households by permuting hous-
ing stock amenities. Notably, while the top and 9th decile both increase exposure
to themselves, cross-exposure among individuals above the MSA median income
decrease broadly, as does cross-exposure for those earning below the MSA me-
dian. By de-linking elevation gradients with housing stock preferable to the
rich, the top decile becomes split among those who can afford the premium of
the remaining tracts with an “ideal” combinations of housing stock quality and
elevation, and those who are forced to mingle with poorer households.

The final distinction between this counterfactual and that of 4.1 is that the
richest decile suburbanizes as opposed to centralizing. This is because here, the
desirable elevation bundles of the suburbs remain intact, but the particularly
desirable housing bundles of the CBD are permuted. While we cannot conclude
precisely whether the demand or housing supply effect is stronger in determining
the correlation between income and hills, the broad similarity of the income
and expected elevation gradient outcomes of 4.1 and 4.4 suggests that both
effects are not unimportant. The relationship between neighborhood income
and topography is most likely best explained by a combination of demand and
supply-side effects.

29As households in our model respond to log prices with linear sensitivity, in reality the
top decile is likely far more sensitive to large increases in housing prices. However, higher
marginal sensitivity would not fundamentally change the sorting equilibrium, only the price
at which the equilibrium is reached by equalizing demand and supply.
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5 Conclusion

In this paper, we demonstrate with a simulation-based approach that topo-
graphical structure - the distribution of elevation within and among locations
- matters in terms of neighborhood sorting outcomes. By simulating house-
hold location choices for 25 major MSAs containing 29% of all US urban tracts,
we show that rich households sort to the hilliest locations when cities become
hillier, and sort away from such locations when cities are perfectly flattened.
When cities are flattened, rich households centralize, living in relatively poorer
neighborhoods at lower prices. When cities become more uneven, rich house-
holds suburbanize, live in richer neighborhoods at higher prices.

We consider two main assumptions regarding the interaction between quality
of local housing stock and neighborhood income. In the base case, we assume
that housing stock quality is perfectly immutable and cannot be adjusted as
households move in and out of a neighborhood. We consider a second scenario
where housing stock quality is perfectly adjustable and fully reflected in the
median income level of a given tract. In the second case, both the rich and
poor respond more strongly in terms of changes to income, price, and elevation
gradient outcomes in the two counterfactuals.

Additionally, we simulate a scenario where hills remain, but we break the link
between hills and housing bundles desirable to rich households. This simulation
yields income sorting effects and changes to the amount of hilliness experienced
by the rich and poor that are broadly similar to those of perfectly flattening
cities. This suggests that the relationship between rich households and hills is
likely best explained by a combination of the demand-side effects of hills as a
natural amenity, and supply-side effects of housing bundles desirable to such
households being concentrated in hilly areas.

In so doing, we present a strong case that elevation is neither merely a histor-
ical determinant of high-income locations nor only a natural amenity that only
applies to substantially uneven cities. Topography in itself plays a non-trivial
role in determining the spatial distribution of rich and poor neighborhoods as
well as housing prices at the equilibrium; this holds true for a broad range
of cities spanning all major US geographical areas, many with only moderate
amounts of elevation variance.

We conclude that topography plays a significant, ongoing, and nuanced role
in shaping income and housing price patterns in cities. Not only is income seg-
regation in uneven cities qualitatively different from that of extremely flat cities,
certain locations in such cities are also fundamentally attractive or unattractive
to high-income households and, other locations, to low-income ones. Redis-
tributive economic policies will be less effective in more uneven cities because
of their unevenness, and they must also struggle with an immutable dimension
to neighborhood inequality.
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Appendix

Figure A1: Boxplot of log tract average altitude (meters), all dataset MSAs
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Table A1: Price sensitivity by MSA, baseline model

Decile 1 2 3 4 5 6 7 8 9 10

Albuquerque -0.263 -0.255 -0.248 -0.254 -0.236 -0.234 -0.222 -0.198 -0.182 -0.138

Atlanta -0.444 -0.413 -0.436 -0.405 -0.386 -0.364 -0.356 -0.308 -0.288 -0.242

Austin -0.350 -0.368 -0.345 -0.338 -0.314 -0.322 -0.314 -0.261 -0.217 -0.157

Baltimore -0.449 -0.420 -0.411 -0.388 -0.360 -0.348 -0.315 -0.294 -0.252 -0.221

Boston -0.524 -0.491 -0.506 -0.541 -0.486 -0.470 -0.498 -0.459 -0.425 -0.335

Charlotte -0.394 -0.378 -0.356 -0.338 -0.329 -0.293 -0.280 -0.264 -0.210 -0.150

Cincinnati -0.554 -0.499 -0.465 -0.424 -0.393 -0.360 -0.352 -0.327 -0.268 -0.210

CO Springs -0.498 -0.469 -0.470 -0.423 -0.359 -0.354 -0.340 -0.241 -0.195 -0.160

Denver -0.555 -0.570 -0.574 -0.565 -0.539 -0.576 -0.533 -0.498 -0.404 -0.327

Kansas City -0.431 -0.418 -0.381 -0.378 -0.346 -0.314 -0.316 -0.263 -0.249 -0.205

Los Angeles -0.445 -0.437 -0.436 -0.405 -0.373 -0.338 -0.306 -0.256 -0.228 -0.207

Louisville -0.276 -0.281 -0.270 -0.257 -0.242 -0.230 -0.219 -0.196 -0.153 -0.106

Memphis -0.714 -0.516 -0.491 -0.366 -0.315 -0.281 -0.244 -0.159 -0.125 -0.081

Nashville -0.342 -0.349 -0.364 -0.317 -0.323 -0.292 -0.286 -0.235 -0.220 -0.167

Omaha -0.342 -0.333 -0.317 -0.292 -0.271 -0.247 -0.236 -0.203 -0.181 -0.172

Phoenix -0.527 -0.484 -0.468 -0.444 -0.409 -0.381 -0.387 -0.315 -0.305 -0.239

Pittsburgh -0.484 -0.429 -0.415 -0.387 -0.333 -0.319 -0.321 -0.271 -0.228 -0.186

Portland -0.329 -0.351 -0.348 -0.358 -0.348 -0.330 -0.320 -0.291 -0.298 -0.229

Salt Lake City -0.323 -0.338 -0.337 -0.320 -0.326 -0.282 -0.288 -0.269 -0.232 -0.192

San Diego -0.360 -0.408 -0.406 -0.379 -0.383 -0.368 -0.353 -0.299 -0.291 -0.229

San Francisco -0.376 -0.372 -0.371 -0.374 -0.342 -0.340 -0.344 -0.320 -0.285 -0.246

Seattle -0.321 -0.340 -0.338 -0.341 -0.344 -0.319 -0.317 -0.301 -0.280 -0.226

St. Louis -0.362 -0.330 -0.312 -0.277 -0.271 -0.258 -0.248 -0.232 -0.196 -0.133

Tucson -0.260 -0.266 -0.241 -0.234 -0.224 -0.197 -0.186 -0.168 -0.149 -0.115

Washington DC -0.404 -0.422 -0.425 -0.406 -0.403 -0.393 -0.365 -0.368 -0.326 -0.261
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Table A2: Preference for tract median income by MSA, baseline model

Decile 1 2 3 4 5 6 7 8 9 10

Albuquerque 0.046 0.085 0.160 0.171 0.213 0.166 0.190 0.254 0.243 0.335

Atlanta 0.165 0.211 0.326 0.360 0.345 0.355 0.378 0.374 0.416 0.542

Austin 0.063 0.144 0.154 0.236 0.290 0.304 0.326 0.268 0.232 0.269

Baltimore 0.191 0.212 0.271 0.314 0.285 0.311 0.279 0.271 0.201 0.200

Boston 0.278 0.281 0.319 0.447 0.452 0.462 0.562 0.536 0.557 0.586

Charlotte 0.144 0.178 0.203 0.248 0.313 0.254 0.233 0.193 0.220 0.170

Cincinnati 0.273 0.382 0.404 0.400 0.361 0.341 0.365 0.335 0.302 0.221

CO Springs 0.317 0.285 0.335 0.372 0.299 0.343 0.286 0.147 0.003 0.000

Denver 0.454 0.414 0.403 0.537 0.461 0.595 0.548 0.516 0.443 0.681

Kansas City 0.181 0.259 0.318 0.357 0.319 0.243 0.260 0.222 0.228 0.180

Los Angeles 0.267 0.257 0.388 0.413 0.408 0.385 0.347 0.259 0.243 0.358

Louisville 0.000 0.042 0.181 0.195 0.229 0.219 0.193 0.189 0.167 0.046

Memphis 0.428 0.318 0.444 0.344 0.264 0.195 0.205 0.090 0.063 0.227

Nashville 0.000 0.028 0.299 0.274 0.322 0.283 0.306 0.226 0.260 0.206

Omaha 0.000 0.183 0.131 0.142 0.224 0.227 0.187 0.120 0.156 0.209

Phoenix 0.340 0.280 0.336 0.371 0.396 0.389 0.407 0.391 0.605 0.725

Pittsburgh 0.116 0.205 0.343 0.328 0.285 0.307 0.303 0.308 0.219 0.251

Portland 0.117 0.114 0.158 0.171 0.263 0.323 0.325 0.240 0.229 0.249

Salt Lake City 0.189 0.073 0.115 0.247 0.315 0.158 0.274 0.263 0.172 0.074

San Diego 0.129 0.154 0.240 0.262 0.320 0.406 0.421 0.352 0.508 0.648

San Francisco 0.109 0.113 0.136 0.212 0.164 0.234 0.321 0.330 0.308 0.339

Seattle 0.000 0.000 0.022 0.163 0.231 0.352 0.349 0.319 0.352 0.458

St. Louis 0.019 0.082 0.157 0.173 0.197 0.234 0.214 0.170 0.163 0.247

Tucson 0.000 0.049 0.135 0.182 0.183 0.145 0.173 0.120 0.267 0.592

Washington DC 0.163 0.134 0.159 0.200 0.240 0.321 0.321 0.383 0.410 0.483
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Table A3: Price sensitivity by MSA, endogenous housing stock

Decile 1 2 3 4 5 6 7 8 9 10

Albuquerque -0.399 -0.398 -0.353 -0.348 -0.321 -0.319 -0.305 -0.280 -0.251 -0.217

Atlanta -0.491 -0.450 -0.445 -0.423 -0.423 -0.397 -0.371 -0.327 -0.308 -0.254

Austin -0.336 -0.350 -0.349 -0.350 -0.316 -0.323 -0.309 -0.273 -0.230 -0.162

Baltimore -0.451 -0.427 -0.388 -0.379 -0.348 -0.338 -0.322 -0.291 -0.274 -0.221

Boston -0.656 -0.633 -0.633 -0.630 -0.611 -0.605 -0.589 -0.560 -0.550 -0.447

Charlotte -0.409 -0.372 -0.334 -0.328 -0.296 -0.277 -0.281 -0.240 -0.200 -0.148

Cincinnati -0.623 -0.621 -0.550 -0.475 -0.397 -0.444 -0.369 -0.347 -0.293 -0.246

CO Springs -0.528 -0.493 -0.484 -0.472 -0.341 -0.343 -0.329 -0.239 -0.183 -0.141

Denver -0.438 -0.447 -0.430 -0.442 -0.418 -0.409 -0.405 -0.409 -0.329 -0.265

Kansas City -0.512 -0.469 -0.445 -0.418 -0.397 -0.375 -0.353 -0.310 -0.281 -0.250

Los Angeles -0.423 -0.357 -0.394 -0.371 -0.334 -0.309 -0.282 -0.237 -0.227 -0.220

Louisville -0.280 -0.285 -0.269 -0.256 -0.237 -0.240 -0.227 -0.190 -0.153 -0.105

Memphis -0.632 -0.500 -0.462 -0.351 -0.306 -0.279 -0.245 -0.167 -0.126 -0.082

Nashville -0.374 -0.353 -0.369 -0.336 -0.309 -0.290 -0.275 -0.237 -0.211 -0.162

Omaha -0.340 -0.323 -0.296 -0.279 -0.246 -0.235 -0.227 -0.186 -0.183 -0.181

Phoenix -0.377 -0.329 -0.336 -0.305 -0.288 -0.279 -0.270 -0.224 -0.212 -0.169

Pittsburgh -0.529 -0.487 -0.461 -0.436 -0.363 -0.370 -0.372 -0.294 -0.265 -0.221

Portland -0.408 -0.449 -0.443 -0.444 -0.423 -0.421 -0.423 -0.386 -0.352 -0.307

Salt Lake City -0.334 -0.339 -0.348 -0.338 -0.335 -0.300 -0.292 -0.249 -0.239 -0.192

San Diego -0.335 -0.357 -0.355 -0.359 -0.334 -0.333 -0.305 -0.284 -0.262 -0.205

San Francisco -0.336 -0.343 -0.347 -0.352 -0.335 -0.320 -0.320 -0.303 -0.289 -0.230

Seattle -0.398 -0.435 -0.426 -0.423 -0.423 -0.398 -0.389 -0.371 -0.348 -0.270

St. Louis -0.348 -0.335 -0.300 -0.273 -0.246 -0.250 -0.233 -0.238 -0.201 -0.143

Tucson -0.390 -0.378 -0.358 -0.341 -0.309 -0.283 -0.276 -0.263 -0.232 -0.171

Washington DC -0.383 -0.393 -0.409 -0.403 -0.405 -0.385 -0.369 -0.361 -0.330 -0.260
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Table A4: Preference for tract median income by MSA, endogenous housing
stock

Decile 1 2 3 4 5 6 7 8 9 10

Albuquerque 0.312 0.375 0.354 0.361 0.339 0.327 0.316 0.279 0.226 0.167

Atlanta 0.051 0.056 0.224 0.284 0.377 0.409 0.370 0.388 0.556 0.806

Austin 0.001 0.071 0.157 0.287 0.297 0.350 0.331 0.307 0.290 0.362

Baltimore 0.321 0.224 0.283 0.323 0.277 0.329 0.281 0.195 0.173 0.162

Boston 0.551 0.501 0.490 0.593 0.635 0.611 0.662 0.639 0.680 0.721

Charlotte 0.074 0.060 0.129 0.249 0.302 0.284 0.273 0.233 0.331 0.433

Cincinnati 0.149 0.380 0.437 0.437 0.405 0.450 0.362 0.322 0.360 0.456

CO Springs 0.581 0.261 0.327 0.465 0.275 0.366 0.341 0.248 0.079 0.000

Denver 0.250 0.156 0.208 0.353 0.303 0.421 0.430 0.502 0.451 0.673

Kansas City 0.338 0.337 0.363 0.401 0.411 0.299 0.365 0.263 0.431 0.540

Los Angeles 0.043 0.000 0.226 0.301 0.346 0.341 0.293 0.222 0.323 0.535

Louisville 0.000 0.084 0.182 0.259 0.122 0.220 0.208 0.157 0.123 0.148

Memphis 0.316 0.279 0.451 0.356 0.219 0.265 0.218 0.169 0.231 0.394

Nashville 0.000 0.000 0.266 0.199 0.303 0.298 0.280 0.231 0.228 0.396

Omaha -0.390 -0.087 0.000 0.000 0.145 0.235 0.300 0.492 0.813 1.296

Phoenix 0.036 0.000 0.109 0.167 0.253 0.270 0.316 0.367 0.615 0.797

Pittsburgh 0.355 0.363 0.452 0.441 0.291 0.341 0.364 0.275 0.342 0.437

Portland 0.070 0.169 0.266 0.261 0.357 0.441 0.470 0.405 0.369 0.436

Salt Lake City 0.115 0.000 0.154 0.256 0.334 0.142 0.279 0.220 0.189 0.291

San Diego 0.000 0.034 0.091 0.189 0.258 0.366 0.321 0.251 0.364 0.483

San Francisco 0.001 0.026 0.093 0.173 0.153 0.219 0.309 0.322 0.313 0.390

Seattle -0.052 0.000 0.000 0.058 0.201 0.363 0.420 0.457 0.709 0.924

St. Louis 0.000 0.000 0.021 0.079 0.156 0.210 0.216 0.348 0.487 0.754

Tucson 0.000 0.000 0.178 0.302 0.324 0.268 0.282 0.491 0.657 0.826

Washington DC 0.018 0.000 0.016 0.118 0.127 0.257 0.294 0.390 0.362 0.520
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Figure A4: Relative altitude and elevation variance gradient by income decile,
doubling elevation variance and relative altitude
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Figure A5: Counterfactual outcomes from flattening cities by income decile,
endogenous housing stock
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Figure A6: Counterfactual outcomes from doubling elevation variance and
relative altitude by income decile, endogenous housing stock.
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Figure A7: Relative altitude and elevation variance gradient by income decile,
flattening cities with endogenous housing stock.
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Figure A8: Relative altitude and elevation variance gradient by income decile,
doubling elevation variance and relative altitude with endogenous housing

stock.

Table A5: Average percentage difference in cross-decile exposure between
counterfactual and baseline, doubling elevation variance and relative altitude

with endogenous housing stock

Decile 1 2 3 4 5 6 7 8 9 10

1 -2.77 - - - - - - - - -

2 -2.39 -1.35 - - - - - - - -

3 -1.47 -1.25 -0.81 - - - - - - -

4 -0.90 -0.92 -0.80 -0.50 - - - - - -

5 0.07 -0.23 -0.39 -0.32 -0.14 - - - - -

6 0.68 0.23 -0.02 -0.10 -0.16 -0.14 - - - -

7 1.47 0.85 0.46 0.21 -0.18 -0.30 -0.34 - - -

8 2.76 1.97 1.35 0.81 0.03 -0.35 -0.68 -0.76 - -

9 4.58 3.28 2.42 1.57 0.34 -0.37 -1.05 -1.99 -1.98 -

10 6.57 5.00 3.73 2.72 1.11 0.02 -0.87 -2.68 -4.08 -4.46
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Table A6: Average percentage difference in cross-decile exposure between
counterfactual and baseline, flattening cities with endogenous housing stock

Decile 1 2 3 4 5 6 7 8 9 10

1 4.22 - - - - - - - - -

2 3.05 2.37 - - - - - - - -

3 1.64 1.65 1.41 - - - - - - -

4 0.7 0.94 1.06 0.89 - - - - - -

5 -0.31 0.04 0.31 0.44 0.39 - - - - -

6 -0.93 -0.44 0 0.26 0.42 0.49 - - - -

7 -1.83 -1.11 -0.56 -0.09 0.34 0.55 0.71 - - -

8 -3.76 -2.64 -1.71 -0.9 0.00 0.47 0.95 2.01 - -

9 -5.68 -4.22 -2.97 -1.78 -0.46 0.09 0.92 2.51 3.46 -

10 -7.31 -5.85 -4.49 -3.09 -1.36 -0.75 0.34 2.38 4.22 5.65

Figure A9: Counterfactual outcomes from permuting tract-level amenities by
income decile
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Table A7: Average percent difference in cross-decile exposure between
counterfactual and baseline, permuted tract amenities

Decile 1 2 3 4 5 6 7 8 9 10

1 6.90 - - - - - - - - -

2 -10.05 8.01 - - - - - - - -

3 -6.56 -5.61 4.18 - - - - - - -

4 -4.70 -3.90 -2.58 2.46 - - - - - -

5 -2.02 -2.08 -1.08 -0.63 1.72 - - - - -

6 0.54 -0.26 -0.08 -0.09 -0.28 1.41 - - - -

7 2.42 1.79 1.65 1.05 0.34 -0.50 1.71 - - -

8 5.33 4.18 3.38 2.22 0.50 -0.72 -2.36 3.82 - -

9 8.70 6.83 4.90 3.36 1.14 -0.90 -3.26 -7.02 7.61 -

10 9.42 9.47 6.73 5.00 1.45 -1.29 -4.96 -9.53 -15.61 8.63
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