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Abstract

This paper presents an in-depth analysis of hilliness effects in Amer-
ican urban communities. Using data from seventeen cities, we establish
robust relationships between elevation patterns and density and income
gradients. We find that high-income households display strong preference
not only for high-altitude but also for high unevenness, leading to spatial
income stratification at both the city and tract-level. We analyze potential
causes of this propensity: micro-climate, crime, congestion, view effects,
and use of public transit. We conclude that multi-dimensional spatial
methods are crucial to investigations of cities with substantial uneven-
ness. Moreover, redistributive social and economic policies must struggle
with a fundamental, topographical dimension to inequality.
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1 Introduction

In the past two decades, spatial methods have experienced a surge in atten-
tion among economists. Much empirical research has focused on bi-dimensional,
geographical-coordinate-based modelling approaches and operate under location-
parity, spatial equilibrium (Glaeser and Gottlieb 2009; Grimaud and Laffont
1989) conditions. Cities are largely assumed to be flat, featureless plains. Gov-
ernments, workers, households and firms, in the absence of economic incentives,
are assumed to be indifferent among locations.

Yet we seem to understand intuitively that locations are not created equally.
While walking down or up a slope is undesirable, wealthy individuals seem to
strongly prefer living on hillsides; cities with uneven suburbs are centrally denser
and often more expensive to live in. Our understanding of these characteris-
tics is so deeply ingrained that one instinctively associates the affixes “hills”
or “heights” with high-income communities. Conversely, “bottom” or “flats”
generally connote low-income areas: one can hardly imagine John Steinbeck
writing Tortilla Heights rather than Tortilla Flat.

This paper presents a formal study of the economic consequences of eleva-
tion as a locational attribute in a US-centric, multi-city framework. By con-
structing high-resolution Digital Elevation Models (DEMs) for seventeen major
metropolitan areas, we demonstrate that altitude and unevenness of terrain
strongly influence income and population patterns. Specifically, we find that
controlling for spatial factors, doubling of a tract’s elevation variance, defined
as the standard deviation of within-tract altitude samples, is associated with
a decrease in population density of 20.8%, an increase in median household
income of 4.4%, and an increase in the tract Gini coefficient of 1%.

In light of recent literature on geographical features as natural amenities or
disamenities (Saiz 2010; Lee and Lin 2015; Burchfield et al. 2006), our paper
develops the discussion in two important aspects. First, our approach suggests
that elevation effects need not be explicitly linked to actual hills or mountains:
terrain does not have to be so uneven as to constrain development or provide
explicit utility in terms of views or attractions to influence density gradients or
income distributions. We show that cities that are not conventionally consid-
ered ”hilly” (Kansas City; Dallas, TX) may nonetheless have significant effects
related to elevation variance and altitude.

Second, beyond the explanation of “view” effects as natural amenities for
high-income individuals, we provide evidence for four intermediaries through
which elevation patterns influence major urban gradients: micro-climate, crime,
congestion, and costs of accessing public transit. Ceteris paribus, our models
indicate that households in high-altitude, high-unevenness tracts enjoy milder
weather patterns, significantly lower rates for a range of crimes, less local con-
gestion, and they commute less by public transit and walking. These effects
are robust to comprehensive controls for local income profiles, suggesting that
even relatively mild levels of unevenness may drive a wedge between utility of



a location derived by high and low-income households.

In light of recent literature on elevation variability effects related to housing
and use of public transit (Ye and Becker 2016), our work connects transaction-
level price effects to measurable differences in usage patterns of public transit
among different locations of a given city. With data from a multi-city panel,
we conclude that such effects are at least somewhat consistent across cities with
varying degrees of public transit accessibility. It also suggests the potential for
elevation gradient effects to price into housing markets through other factors.

The salient prediction of our findings is that independent of centricity, local
amenities and historical conditions, spatial socioeconomic stratification contains
an elevation gradient component: for a large range of cities, certain locations
are intrinsically attractive to high-income individuals and unattractive to low-
income ones. It is not difficult to conceptualize how outcomes predicted by
sorting models of racial aversion (Courant 1978; Bailey 1966; Bayer and McMil-
lian 2005) could be reinforced and perhaps even exacerbated by a purely geo-
graphical aspect to segregation. Such persistent and fundamental barriers to
integration no doubt pose significant challenges to designers of redistributive
microeconomic policies.

Section 2 reviews prior literature related to elevation effects and spatial
modelling. Section 3 outlines empirical methodologies and data sources utilized
in the geospatial modelling process. Section 4 discusses model robustness and
presents evidence for elevation effects in density and income gradients; section
5 presents evidence for intermediary effects. Section 6 concludes.

2 Prior Literature

The classic spatial literature addresses a number of relationships between
aspects of natural geography and economic outcomes. Somewhat similar to our
multi-city framework, Bosker and Buringh (2015) utilize broad, geographical
perspectives to explain initial locational choice of major European cities. Rap-
paport (2007) models nice weather as a commodity to explain US migration
flows. The role of water bodies have been investigated from perspectives such
as the constraining of land supply due to lakes and oceans (Rose 1989) and the
economic attractiveness of coastal living (Rappaport and Sachs 2003).

Literature specifically concerning elevation effects is relatively limited. Ex-
isting research primarily focuses on flood risk as an undesirable outcome of low
elevation (Scawthorn, Iemura, and Yamada 1982; Shilling, Sirmans, and Ben-
jamin 1989). Recent work on similar topics features significantly more advanced
methods such as the combining of spatial methods with hedonic housing data
(Bin et al. 2011) or with dynamic models (Husby et al. 2014). While not featur-
ing elevation as a primary investigative target, Kok, Monkkonen, and Quigley
(2014) find evidence of elevation effects in San Francisco land value.

Saiz (2010) presents a study of geographical influences in housing and land



markets of 73 major MSAs, finding that undevelopable land on the city periph-
ery is a strong predictor of low housing supply elasticity. While his work directly
investigates elevation effects on urban gradients, we identify two shortcomings.
First, by using a 15% slope cutoff, an artificial dichotomy is created between
developable versus undevelopable land, while in reality the decision to develop
a location depends on a wide range of supply and demand-side factors. Second,
the model assumes that elevation primarily influences urban gradients by limit-
ing land supply, whereas phenomena such as high-income household preferences
for elevation do not seem to be driven by the supply of land. Here, we show
that by modelling elevation not as a binary term but as continuous factors of
unevenness and altitude, these issues can be addressed successfully.

Lee and Lin (2015) build on prior work (Bleakley and Lin 2012; Lin 2015)
on the role of geographic features in persistence of income distribution and
present a formal theory and empirical evidence of the role of natural amenities
in shaping income distributions across space. Specifically, they model natural
geographical features as “anchors” for high-income households and show that
proximity to hills, as with proximity to a range of other natural amenities such
as coastal proximity and lakes, is associated with a positive income effect.

Our contribution to this discussion is twofold. First, while our findings
confirm that a “pure” natural amenity is indeed likely to exist for actual hills as
a preference for scenery, we also show that the influence of terrain is not limited
to locations that are conventionally considered as having such amenities. In
other words, cities that do not have salient natural features in terms of hilliness
(Kansas City; Pittsburgh) are also shaped by local elevation profiles.

Second, we present evidence that elevation variance and altitude is not only
an amenity to the rich but also a cost to the poor. Through the intermediary
effects as outlined in Section 5, middle-income households that are likely to not
pay significant premiums for scenery would nonetheless strongly prefer locations
with higher altitude and unevenness. Low-income households that regularly use
public transit or walk would perceive such locations as a distinct disamenity.
These findings suggest that the role of elevation is richer and more nuanced than
presented in the existing literature.

Using data from the Hong Kong government-subsidized housing market, Ye
and Becker (2016) find significant elevation gradient effects in apartment sale
prices. The paper concludes that walking up or down an incline to public transit
hubs is highly undesirable: holding other factors constant, a 1-decimal-degree
increase in the slope between an apartment and the closest metro station de-
creases its selling price by up to 1.9%. While Hong Kong may be an out-
lier among global cities because of its highly uneven terrain, these results are
nonetheless significant. In this present paper we not only demonstrate existence
of public transit-elevation effects in US cities in general, but also expand the
influence of elevation to a much broader set of urban gradients.



3 Methodology

3.1 Data Collection and Summary

At the core of our analysis is the merging of two datasets: a panel of in-
formation on census-tract-level statistics, and a dataset of elevation gradients
and other geospatial factors. For altitude and unevenness, we use the Microsoft
Representational State Transfer (REST) Services to construct city-level DEMs.!
Altitude figures are sampled from each city on a 0.3-by-0.3 decimal-degree square
region centered on respective downtown areas at a grid resolution of 500x 500,
and joined to individual census tracts using boundary data from the US Cen-
sus Bureau’s Topologically Integrated Geographic Encoding and Referencing
(TIGER) database.? The mean altitude and elevation variance of each census
tract is calculated by taking the average and standard deviation of all interior
sample points. We henceforth abbreviate these metrics as, respectively, mal
(mean altitude) and elv (standard deviation of elevation).

Since tract boundaries do not usually coincide with edges of the sampling
area, tracts on the border of the sampling square that, excluding water area,
are not at least 80% covered by elevation sample points are excluded from the
dataset.? To prevent elv estimates from being calculated from samples that
are too small, we also exclude tracts that contain less than 20 elevation sample
points. To address downward bias in elv caused by local water areas, we examine
each city and remove elevation samples at the local water level.

To illustrate the existence of general elevation effects across cities, we select
cities for elevation data collection to maximize diversity in terms of both un-
evenness and geographical orientation. Seventeen major cities and surrounding
suburbs are selected: Atlanta, Boston, Charlotte, Cincinnati, Dallas, Denver,
Kansas City, Los Angeles, Miami, Nashville, New York City, Pittsburgh, Port-
land (Oregon), San Diego, San Francisco, Seattle, and Washington, DC. All of
the ten Standard Federal Regions are represented by at least one city, and cities
are divided roughly equally among Census Bureau statistical regions. Figure 1
contrasts the distribution of census tract elv of dataset cities.

Performing elevation sampling over the aforementioned cities yields usable
elevation data for a total of 6,645 census tracts, with an average sampling den-
sity of 463.1 points per tract for a total of approximately 3.08 million samples
in total, or about 181,000 per MSA. To account for outliers in elevation level
(Denver), we transform altitude measurements from meters to a ”relative alti-

1DEM contour plots of select cities are presented in Figure A9 in the appendix.

2Decimal degrees translate to marginally different distances in regular length terms at different
latitudes. For the range of latitudes in the dataset, the side length of the sampling square
may vary from 22.5km (Seattle, 47.5°N) to 30km (Miami, 25.8°N).

3We estimate coverage by comparing the per-unit area point count of partially covered tracts
with that of fully covered tracts in the same city.

4Sea-level elevation samples are removed from coastline cities, as are samples from major local
rivers, reservoirs and lake surfaces of landlocked cities.



Figure 1: Standard boxplot of tract elevation variance (log) by city
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tude” metric ral of standard deviations above or below the city average. To
control for fixed effects of tract proximity to the ocean, we construct a separate
spatial model using National Oceanic and Atmospheric Administration (NOAA)
coastline profiles and calculate tract distances to the coastline.’

We utilize the REST routes Application Program Interface (API) to gen-
erate driving distance and time estimates from each census tract to respective
downtown areas.® Three sets of values are collected: a hypothetical “no-traffic”
estimate, an estimate assuming traffic conditions at 7:00am local time, and a
third one assuming conditions at 7:00pm. By introducing a road-network based
monocentricity metric and separately controlling for driving times at different
intervals of the day, this approach accounts for the presence of natural barriers
to commuting (New York City, San Francisco) as well as possible temporal dif-
ferences in commuting time costs; i.e., heavy downtown traffic that only occurs
during the morning or evening commute.”

The routes API is also used to construct a measurement of local traffic con-
gestion. From the center of each census tract, we calculate “no-traffic” and
7am driving time estimates to eight different destinations at an equal linear dis-
tance of 8 kilometers, at bearings from 0° to 315° in 45-degree increments.® The

5“Coastline” is defined by NOAA guidelines. http://shoreline.noaa.gov/glossary.html

6The API is set to optimize for driving time and, if time estimates are equal for two or more
routes, to choose the shortest route.

7Conceptually, we would not expect all residents of all tracts to commute regularly to down-
town. However, real proximity to downtown in terms of expected travel costs is a strong
predictor for a rich variety of spatial factors such as housing value and local amenities.
By explicitly controlling for travel time, we effectively absorb much of the heterogeneity in
income and density related to those effects.

8If a destination point is on water or otherwise inaccessible as estimated by the API, the



proportional relative time penalties of the 7Tam drive are averaged and standard-
ized on a 0-100 scale to create a tract “congestion score”, with 0 representing
maximum and 100 representing minimum congestion among dataset tracts.

Elevation and spatial data are combined with demographic, income and ed-
ucation information on census tracts from the 2009-2013 five-year American
Community Survey (ACS). Removing observations with missing data yields a
remaining total of 6,383 observations usable for the regression model.” Pop-
ulation density figures are generated by dividing ACS population figures over
standardized TIGER tract area size estimates. To adjust for potential spatial
autocorrelation (Dubin 1991; Hubert, Golledge, and Costanza 1981) on vari-
ables of interest, we calculate city-specific spatial autocorrelation values for all
response variables using between-tract point distances and a squared Euclidean
distance (L2) penalty scheme.

3.2 Modelling methods

Our empirical specifications begin with a Linear Mixed Effects (LME) Model
(Goldstein 1987). The reasoning for employing this relatively complex proce-
dure is twofold. First, the implicit assumptions of LME are most consistent
with our intuitive understanding of the role of elevation in urban gradients.
Households, being fundamentally somewhat similar, should also be similar in
their aggregated response to elevation effects. On the other hand, one would
not expect that households across different cities perceive elevation variance
identically when testing for the existence of such effects because US cities vary
so much in terms of elevation profile. Our observations also take the form of
an unbalanced city-level panel, where within-city observations are much more
highly correlated than observations in different cities.

A Fixed Effects Linear Model (FELM) captures the commonality of elevation
gradient effects but assumes that they are identical across cities by extracting a
single slope for all cities. Running separate OLS regressions by city captures the
variation in the effect of elevation but implicitly assumes that the effects being
measured are fundamentally different. In contrast, LME negotiate a midpoint
between these approaches by allowing for slopes by city under the assumption
of measuring “emissions” of a common effect.

Second, LME allows for the testing of whether elevation effects differ sig-
nificantly by city or is significant for a particular city with regard to the null
with no need for additional mechanisms or modelling (such as model comparison
tests for multiple separate regressions). We consider this a superior approach in
terms of consistency to specifying separate models for tests for a general versus
city-specific effect. We also note that running separate regressions by city would
inflate the difference between elevation effect coefficient estimation by assuming
fundamentally different effects.

furthest accessible point within the 8km-range with the same bearing is used.
9See Appendix Section C for a discussion on not utilizing imputation.



The primary challenge we face in drawing inferences on city-specific effects
is that null hypothesis tests derived from a single LME model are generally
regarded as unreliable.'® Qur solution is to combine LME with a bootstrapping
model that additionally incorporates uncertainty of our data by using “pseudo-
data” drawn from Gaussian distributions from the original data with ACS-
reported standard errors. Appendix Section A provides a discussion of this
issue as well as the methodology and advantages of combining the LME model
with bootstrapping and pseudo-data.

We note that this is also an advantage of using ACS over 2010 Census data:
census data collection is inevitably error-prone and errors are generally non-
random. Locations with more owner-occupied residencies, high density, and
within major urban areas (which may correlated with income) generally will
have more reliable estimates. Because these gradients are our response vari-
ables, we consider it extremely important that uncertain estimates be strongly
discounted in deriving coefficients.

We also note that pseudo-data bootstrapping precludes the need for exami-
nation of outliers: outliers with high certainty have good reason to be factored
into the model, and the effect of outliers with low certainty will be averaged out
across bootstrap iterations. Observations where only one or two variables have
extreme values will also be discounted less than observations where many covari-
ates take extreme values. It also lowers the likelihood of statistically significant
findings being an artifact of the data itself: estimates of individual iterations do
not necessarily have to be distributed symmetrically with regard to the mean.

A summary of tests of model performance is provided in Appendix Section B,
including favorable comparisons to both single-model tests (LME, FELM, OLS)
and pseudo-data bootstrapping of reduced models. See Appendix Section C
for an extended discussion on computing LME model coefficient p-values and
estimating R? under pseudo-data bootstrapping.

Elevation as a spatial attribute lacks reciprocity: it shapes how cities are
built, yet only in rare cases do human activity significantly change the profile
of land. Therefore it is not difficult to establish basic causality in the sense that
urban gradients are shaped by elevation, yet is difficult to isolated direct causal
effects from indirect effects that initially originate from elevation, yet should
be attributed to other, “intermediary” urban gradients. Also, we would expect
elevation to be correlated with income gradients even if there were no current
or ongoing amenity effect so long as historical amenity effects exist.

We address this concern by restricting the size of models to estimate the ef-
fect of elevation on major urban gradients: for population density, only spatial
factors (coastline distance, driving distance and time estimates, tract size, and
presence of water) are controlled for; for household income only spatial factors
and density, and for census tract Gini coefficients we include only spatial fac-
tors, density and median income''. This allows for the establishment of basic,

10See Appendix Section A for an extended discussion.
11We note that adjusting for tract size absorbs the variation in elv caused by larger tracts



“location-neutral” relationships between elevation and major gradients. Extra
control variables, such as those for employment, occupancy status, income level
and ethnic composition are included in models for intermediary effects in Sec-
tion 5, as these analyses are intended to demonstrate strong evidence for direct
causality of ongoing utility provided by elevation. We provide a summary of
parameters for each model in Tables A2 and A3 in the appendix.

While this structure may seem somewhat semi-recursive in nature, it avoids
the difficulty of interpretation that including extra control variables in the main
gradient models or fewer control variables for the intermediate effect regressions
may cause. However, disentangling elevation gradient effects from other spatial
factors, most importantly monocentricity and proximity to water, is still neces-
sary because downtown areas and areas close to a lake or ocean are likely to be
the flattest parts of a city. In a similar vein we control for spatial autocorrela-
tion, given that many, if not all urban gradients we investigate (density, income,
crime, congestion) are expected to display high levels of spatial dependency.

4 Elevation Effects in Major Urban Gradients

Controlling for spatial factors outlined in Section 3.2 and autocorrelation, we
find strong evidence for a negative relationship between tract elv and population
density (p<0.01), and a positive relationship between elevation variance and
median household income (p=0.014).'? The relationship between the tract Gini
coefficient and elv is marginally significant (p=0.07). Holding spatial factors
constant, we estimate that doubling of elv, assuming city-average ral = 0, is
associated with a decrease in density of 20.8%, an increase in tract median
income of 4.4%, and an approximately 1% increase in the tract Gini.'® The
relationship between ral and population density is highly significant but positive
(p<0.01), assuming zero elevation variance.

We note that there is strong evidence that density and income gradients of
different cities are associated differently with ral and elv. As Figure 2 indi-
cates, while there exists a shared component in the relationship between elv
and population density, the mean of coefficient distributions and the possibility
of rejecting the null hypothesis differ significantly by city.'*

The key finding from Figure 2 is that hilliness is associated with reduced

having more elevation sample points and hence generally having higher variance.

12For ease of interpretation, we translate coefficient distributions into null hypothesis con-
firmation rates under a one-tail assumption. Note that because of the limited number of
coefficient draws, it is not feasible to inference beyond 99% confidence level. For coefficients
with less than 5 draws that reject the alt hypothesis, the notation “p<0.01” is used.

13To clarify, the effect size is 1% of the coefficient and not one percentage point. In other
words, doubling elv is associated with the change from a given GINI of 0.4 to 0.404, not
0.41.

14Random effects for elevation variance on population density for Seattle, Charlotte, Boston,
Miami, Atlanta and NYC cannot be established at 95% certainty. p<0.001 for unpaired
t-tests between the distribution of coefficients on Nashville and that of all other cities.



Figure 2: Distributions of random effect coefficient estimates of log(elv) by
city, population density model
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population density in most metropolitan areas yet the effect varies considerably
across them. A metro area such as Nashville has, in effect, two parts, largely
divided by the Cumberland River. The northeast is characterized by low-lying,
low altitude variance, high density areas. Heading south toward Williamson
County, hilliness increases markedly, as does socio-economic status of the in-
habitants, which in turn is associated with decreased density. In contrast, New
York City and Boston are less hilly, especially near the center and hence socio-
economic differentiation is less associated with topographic variation. While a
formal investigation of city-specific elevation effects is beyond the scope of this
paper, we present select by-city estimates in Figures A5, A6, and A7.

A positive altitude-density relationship may seem counterintuitive. How-
ever, in reality increase in altitude is almost always strongly associated with an
increase in unevenness: the coefficient on the elv-ral interaction effect is nega-
tive and also highly significant (b=-0.06, p<0.01). Consequently, incorporating
interaction effects, the negative elevation variance-density connection strength-
ens as altitude grows, and the positive altitude-density relationship flattens and
eventually slopes downward as elv increases. At 3x dataset-average elevation
variance (24.3), a increase in ral of 1SD translates to a decrease in population
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density of 4.3%. Fitted curves for both effects, assuming dataset-average density
at average altitude and elevation variance, are presented in Figure AS.

To better understand the elevation-income relationship, we perform pseudo-
data bootstrapped random effects regressions on tract mean annual household
income data by quintile, controlling for spatial factors, density and autocorrela-
tion of income levels.'® The coefficient on elv is strongly significant and positive
for all quintiles: mean quintile income increases by $1,132, $3,074, $5,087, $8,777
and $24,895, respectively, per doubling of elevation variance. Mean income of
the top 5% of households by annual income increases by $42,628.

Two observations can be made with regard to quintile income effects: first,
income is higher for all quintiles in tracts with high elevation variance. Ceteris
paribus, even low-income communities in high-variance tracts are richer than
counterparts in low-variance tracts. Second, the proportional changes in quin-
tile income levels are similar: assuming dataset-average annual income levels,
percentage increases in income associated with doubling elv are between 8-13%
for all quintiles. Interaction effects are also significantly positive and similar
across quintiles: doubling elv translates to percentage increases in quintile in-
come of 12-17% at 1-SD above city-average altitude. Changes in absolute and
proportional income are contrasted in Figure 3.

Figure 3: Absolute/proportional change in quintile income level, doubling
elevation variance at ral = 0
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These results are consistent with our findings on tract Gini and median
household income. Significant, positive income effects that are somewhat con-
sistent across income groups translate to a modest increase in the tract Gini.

15Random slopes on elevation parameters are removed to reduce computational load. Z-tests
are performed on single LME models with mean quintile income data as the response to
confirm output significance. Using both methods, all elevation variance coefficients are
significant at the 99% level.
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Given the evidence in Figure 3, the higher within-tract income inequality of
high elv tracts is not caused by the presence of impoverished low-income com-
munities, but rather by the existence of wealthier high-income communities. As
within-tract income distributions tend to be strongly long-tailed, median income
changes are naturally less drastic than changes to the mean.

The income effect of elevation is reflected in a broad range of demographic
pattern behaviors. After controlling for spatial factors, density and autocor-
relation, we find that individuals in high elv, high ral tracts are older, more
likely married, have smaller households, and are more highly educated. Holding
other factors constant, a doubling of elv is associated with a 4.4% increase in
the proportion of tract residents above the age of 64 (rising to 6.0% at ral =
1), a 1.3% increase in the tract median age (2.4% at ral=1), a decrease in the
average household size of 0.026 members (0.036 members at ral = 1), a decrease
in the average married household size of 0.045 members (0.084 members at ral
1), a 1.2% increase in the proportion of married individuals (2.7% at ral =
), a 5.2% increase in the proportion of bachelor’s degree holders (8.4% at ral
= 1), and a 8.7% increase in the proportion of graduate and professional degree
holders at city-average altitude(13.9% at ral = 1).16

—_

The purpose of these models is not simply to reiterate well-established be-
havioral and demographic patterns of high-income households, but to show that
these patterns contain, to some extent, an elevation-oriented component. Much
economics literature has focused on the modelling and much policy has ad-
dressed on the mitigating of education gaps, inequality, and segregation in
American cities. Yet while historical and cultural aspects of these issues are
at least in principle resolvable, there are few ways to redistribute utility gained
from hilliness and altitude to those who live on flat, low-lying land.

It is important to note that our findings are causal only in the sense of
identifying spatial distributions of income stratification and not of the degree of
stratification. Although it is likely that relatively more uneven cities are indeed
more stratified income-wise, it is also possible that elevation gradients merely
determine of where will stratification occur. We do not address this question
here because, given the focus on census-tract-level effects in this paper, our
current dataset is not particularly suitable for drawing inferences at the multi-
city-level.

One way to investigate the relationship between elevation gradients and the
level of income stratification across cities is the merging of lower-resolution el-
evation data with a large panel of Metropolitan Statistical Areas. Our work
in progress combines this approach with a city-scale counterfactual simulation
model (Bayer, McMillian, and Rueben 2004) of the housing market in an effort

1615<0.01 for coefficient on elv for regressions on married household size, proportion of bach-
elor’s degree holders and proportion of graduated degree holders. p=0.01 for regression on
median age, p=0.014 for regression on proprotion of elderly individuals, p=0.024 for regres-
sion on household size, and p=0.154 for regression on proportion of married individuals. All
interaction effects significant at p<0.01 except regressions on elderly individual proportion
and household size (p=0.014 and p=0.032, respectively).

12



to conclusively determine whether cities would become less stratified if elevation
features were removed.

5 Intermediary Effects

Our findings in Section 4 indicate that holding spatial and autocorrelation
effects constant, high-income household strongly prefer locations that are both
hilly and at higher altitudes. Conceptually, the most straightforward explana-
tion of this preference is view effects: a combination of high altitude and high
elevation variance leads to access to beautiful scenery, a strictly luxury good
among housing amenities. Low-income households will have price-elastic de-
mand for scenery, and hence be priced out of high-ral, high-elv neighborhoods.

Figure 4: Percentage of high-income households by annual income
bracket /elevation block'”
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Although view effects are difficult to test directly, there is suggestive evi-
dence. First, as shown in Figure 4, the proportion of high-income households
is progressively higher in high-elv, high-ral tracts. In tracts with elevation
variance greater or equal to 60, 35% of households have an annual income of
above $150,000, more than three times the dataset average of 11.1%.'® Second,

"Each percentage estimate denotes average level of tracts with elv/ral between the two
bounds.
1831 out of the 6,383 observations in the data, approximately 0.5%, report elv > 60.
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elv and elv - ral effects remain positive and significant (p<0.01) for the regres-
sion on the proportion of households with annual income above $200,000 after
controlling for spatial factors, autocorrelation, income level, income inequality,
demographics, proxies for local economic conditions, public transit use, local
congestion and local weather conditions.'® We consider this result suggestive of
a “pure” elevation amenity that exists independent of local economic conditions
and intermediary effects, most conceivably through the form of scenery.

However, there are two reasons to suspect that view effects do not tell the
whole story. First, the proportion of high-income households, generally low at
below city-average ral and low elv levels of 0-20, increases on the margin at these
levels of altitude and variance. Yet it is conceptually unlikely for there to be any
scenery effects at such variances and altitudes. Second, all income quintiles are
of significantly higher income in tracts with greater elv. Yet it seems improbable
that any but the one to two highest-income quintiles are strongly influenced by
view effects when choosing locations of residency.

Considering Figure 4 in light of our finding that elevation effects are sig-
nificant in cities without obvious scenery locations or strong unevenness, it
seems likely that elevation is not only a historical determinant of income dis-
tributions and not only has an impact through scenery, but influences income
gradients through other amenity effects which are attractive to middle-income
households and perhaps unattractive to low-income households. Based on these
observations, we propose four additional explanations of why high elevation-
variance and high-altitude may be positively correlated with income: better
micro-climate, difficulty of accessing public transit and lack of walkability, lack
of local congestion, and lower crime rates.

5.1 Micro-climate effects

While it is well-established that individuals prefer nice weather as a good
with high price elasticity of demand (Rappaport 2007) and, in geography litera-
ture, that there is a strong relationship between topography and climate (Geiger,
Aron, and Todhunter 2009; Linacre 1982), it is not immediately clear whether
micro-climate effects are observable at the census-tract level for dataset cities
and, if so, whether they are correlated with our estimators of altitude and un-
evenness. To show that climate effects exist, we merge our dataset with NOAA
historic weather data on monthly temperature levels by zip code. Random-
intercept regressions are performed on aggregate metrics of weather against elv,
ral, elv - ral and spatial control variables. Population density is included as a
proxy for temperature effects caused by human activity.

Other factors constant, we find that census tracts with higher elv and ral
enjoy better weather. Doubling of elv is associated with a decrease in the

19The elv term is positive but not significant for the regression with proportion of house-
holds with annual income above $150,000 (p=0.13), and elv - ral is positive and marginally
significant (p=0.05). A list of variables used and details are presented in Table A2.
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standard deviation of monthly average temperatures by 2.1% (p<0.01) at city-
average altitude, and a decrease of 2.5% at 1-SD above city average altitude.
Doubling variance is also associated with a decrease in the average monthly
maximum-minimum temperature spread of 2.6% and a decrease in the annual
number of Cooling Degree Days (CDDs) of 2.8% .20 elv - ral is also associated
with marginally more rainfall: at 1-SD above city-average ral, doubling variance
is associated with 0.8% more annual rainfall (p<0.01).

These estimates suggest that there are statistically significant micro-climate
effects at the zip-code level. Areas with higher elv and ral are cooler, receive
slightly more rainfall, and enjoy lower volatility in temperature both between
months of the year and within each month. These effects are not trivial: an
increase in elv of one or two orders of magnitude translates into significantly
smoothed temperature cycles independent of general climatic effects associated
with centricity, local water bodies or human activity.

5.2 Public transit and congestion

We investigate public transit effects by analyzing commuting methods of
individuals in high-variance, high-altitude tracts: using ACS estimates, we per-
form pseudo-data bootstrapped random-intercept regressions on the percentage
of tract workers commuting by public transit and by walking. In addition to
spatial factors and autocorrelation of use of alternative methods of transit, we
introduce control variables for tract income level, income inequality, and demo-
graphics, as well as proxies for local economic conditions.?!

Holding all other factors constant, we find that workers commute signifi-
cantly less via public transit and walking in tracts with high elv. At city-average
altitude, doubling elv translates to a 3.7% reduction in the percentage of work-
ers who commute by public transit (p ~ 0.03). Doubling elv at 1-SD above
city-average altitude is associated with a reduction of 7.1%. The interaction ef-
fect elv - ral is not significant for effects on percentage of workers commuting by
walking. However, the elv effect for walking is significant, with the percentage
of commute-by-walking workers decreasing by 5.6% per doubling of elv.

The difference in altitude effects perhaps can be explained by the extra
supply-constraint of public transit use versus walking: individuals also use pub-
lic transit less when there are fewer options available. Mass transit systems, by
the nature of cost-optimization, almost always will be restricted by unevenness
along routes. Here, we attribute the elv effect to undesirability of walking down
or up steep slopes, which applies equally to commuting by walking and to walk-
oriented public transit hubs, and the ral effect for public transit to a lack of
transit options in tracts with higher relative altitude.

20 All p<0.01. Annual CDDs are calculated by subtracting 65°F from the daily average tem-
perature when the daily average is greater than 65°F, and then summing over all days of
the year.

21Detailed specifications are provided in Appendix Table A2

15



Conceptually, the effect of extra costs of public transit is threefold. First,
when considering the existence of a city-level equilibrium of public transit costs,
low-income households may outbid high-income households in locations where
public transit is relatively accessible (Glaeser, Kahn, and Rappaport 2008), re-
sulting in central concentration of poverty. Our findings imply that households
that heavily utilize public transit would prefer flatter instead of uneven areas.
This provides poor, public-transit dependent populations with incentives to re-
side in generally flatter downtown areas, even if suburbs are well-endowed with
public transit options.

Second, high-income households that do not use public transit will pay a
“flatness premium” when not selecting areas with relatively high elv and ral, and
display opposite preferences. Third, public transit hubs may also be associated
with higher levels of local traffic and commercial activity (Kahn 2007). If major
hubs are mostly located in flat regions of a city, local high-income communities,
in an attempt to avoid close proximity to hubs, also may choose areas with high
elv and ral.

Performing the same regression procedure on congestion scores, we find the
coefficient on ral to be negative and highly significant (p<0.01). elv - ral is
positive and somewhat suggestive (p=0.134). Holding other factors constant
and elv at zero, a 1-SD increase in ral decreases the congestion score by 0.82
points. This effect is reduced at higher elevation variance: at dataset-average
elv, the same increase in ral only decreases the congestion score by 0.59 points.

The direction of the relationship between elv and congestion is consistent
with intuition: uneven and winding roads are harder to navigate and contribute
to local buildups of traffic. The stronger altitude effect is most convincingly
explained by proximity to major roads: freeways and other large road network
components are usually not located in relatively high-altitude areas. There-
fore, high-income households may also view high-altitude location as preferable
because they avoid negative externalities associated with major roads, while
low-income households that do not own vehicles would be relatively indifferent
or even averse to such locations since major roads are also associated with better
public transit options.

5.3 Crime

To investigate the relationship between elevation patterns and local crime,
we merge our dataset with tract-level crime rate data from the 2000 National
Neighborhood Crime Study (NNCS). The study, conducted by Peterson and
Krivo (2000), provides detailed crime rate statistics by type of offense for seven
offense types and 9,593 census tracts. Of the NNCS study tracts, 2,195 coincide
with tracts in our dataset and are used in the following analysis.

Controlling for spatial factors, autocorrelation, tract income level profiles,
demographics and proxies for local economic conditions, we find that tracts
with higher ral and elv enjoy significantly lower crime rates. However, this
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effect does not apply uniformly for all crime types: hilliness effects are highly
significant for robbery, aggravated assault, burglary, larceny and motor vehicle
theft (MVT; all p<0.01), but less so for rates of murder and rape.?? The size
of the effects also differs tremendously: doubling elv translates to a decrease
in rates of theft categories and aggravated assault by 12.6%-21.6%, but to a
decrease in murder rate of only 1% and a decrease in the rape incident rate of
2.2%. Interaction effects are inconsistent in significance, but uniformly negative
for theft categories and aggravated assault.?? Figure 5 presents a contrast of
crime rate changes associated with doubling of elv.

Figure 5: Crime rate reduction by category corresponding to doubling of elv
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The difference between reductions of crime rates is convincingly explained
via the nature of these crimes. Categories such as larceny and MVT are generally
“foot” crimes: for example, it is unlikely that a person would drive one vehicle to
steal another. For such crime types, unevenness of terrain introduces significant
cost: if criminals stand to profit equally from all areas, they would choose to
commit crimes in flatter areas to avoid walking up or down slopes. It is also
possible that uneven terrain introduces addition risk by hindering one’s view in
certain directions and hence complicating one’s plan of escape. Being on foot, it
is also conceivably more difficult to evade capture from law enforcement, which
would have ready access to vehicles regardless of local elv or ral.

In contrast, murder and rape are much more commonly committed as do-
mestic crimes and between acquaintances. Their occurrences are hence not as
significantly affected by elevation effects as the other crime categories. Given

22p=0.036 for murder rate. p=0.02 for rape incident rate.
23p=0.16 for robbery rate, p<0.01 for aggravated assault rate, p=0.016 for burglary rate,
p=0.118 for larceny rate and p<0.01 for rate of MVT.
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the significance of these effects, we conclude that areas with high elv are likely
inherently “safer” than flatter areas of a city, especially for non-violent property
crimes. If safety is priced into the cost of housing and other local amenities, these
locations are expected to have higher concentrations of high-income households.

We note that while we cannot absolutely rule out the possibility that we are
measuring the residual of household wealth effects when estimating the effect
of elevation on crime and transit effects, we consider it highly unlikely for two
reasons. First, we are controlling not only for mean and median income in
the regression but the entire profile of quintile income levels. This means that
any residual on wealth levels must not be picked up by all quintile income
values, monocentricity variables which control for local bid-rent curve slopes, or
the spatial autocorrelation term that approximate expected local levels of the
response variable given a smoothed spatial distribution.

Second, our statistical method is specifically designed to account for uncer-
tainty of both whether we observe a representative sample of tracts and whether
our observed observations are reliable. If our coefficient estimates are robust to
both alternative data values (as distributed in the pseudo-dataset) and alter-
native sets of data (as drawn with bootstrapping), then there is little reason to
doubt that such estimates are “real” in the sense that they are separable from
other effects as estimated in the model.

While these four effects clearly are not the only intermediaries between ele-
vation and income, establishing their existence is nonetheless illuminating. Con-
trasted with view effects, these factors are capable of influencing the decision-
making of middle and upper-middle class households: relatively few households
are affluent enough to afford a truly beautiful view, yet many can afford to en-
joy relatively mild weather, commute regularly by car, live far away from noisy,
dirty freeways, and pay for low crime. In contrast, households that do not own
vehicles will be less responsive to lack of congestion and strongly prefer pub-
lic transit accessibility These effects are consistent with income gradient effects
that predict consistently higher income in high-elv, high-ral tracts.

6 Conclusion

We endeavor in this paper to demonstrate that topographical structure—
specifically, the standard deviation of elevation and relative altitude of a given
location—matters for density, economic and social outcomes. We show that
elevation should not only be considered as a natural amenity arising from the
existence of hills but as a much more nuanced effect separable as preferences for
altitude and elevation variance.

The unmistakable finding is that topographic structure does matter, that
its importance interacts with many different variables, and that it differs from
one MSA to another. Elevation variance and altitude are robust predictors
of density and income gradients at both the city-level and the census-tract-
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level. Other spatial factors constant, tracts with greater unevenness and higher
altitude are less dense, consist of households with significantly higher average
income, and have higher Gini coefficients. We expect these effects to not only
apply to cities with extreme unevenness but also to those with relatively mild
elevation variance.

We further show that elevation effects are rooted in powerful economic in-
centives. We present evidence that uneven locations deter public transit use,
have decreased walkability and lower crime rates, and enjoy less local congestion
and smoothed micro-climate cycles. Similar to the draw of natural amenities,
these effects should attract the rich to uneven, high-altitude locations. However,
they would also push the poor toward flat, low-altitude areas.

We conclude that the role of elevation gradients in American urban com-
munities should not be neglected and that the richness of intermediary effects
presents a significant challenge in terms of addressing fundamental utility advan-
tages of certain locations over others. The finding is an important and sobering
one for those who hope to design policies that would reduce social inequality
and racial segregation.
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Appendix

A Regression Methodology

The evaluation of fixed effect statistical significance in LME models is a
topic of contention in modern statistics (Bolker et al. 2008; Pinheiro and Bates
2000), and equivalents of p-value-based measures in generalized linear models,
such as the Wald Z-test, are generally considered insufficiently conservative and
hence unreliable. Variations of Chi-square tests perform better, but usually are
limited to balanced panels. Moreover, the reliability of ACS census tract data,
as suggested by reported standard errors of estimates, varies greatly between
tracts and categories. Our procedure therefore must account for disparities in
data accuracy across these dimensions and confirm or reject significance given
this extra aspect of uncertainty.

Our solution is also twofold. First, we utilize error estimates provided by
ACS by drawing large numbers of “pseudo-datasets” from Gaussian distribu-
tions centered on the actual tract-figure estimates with variance determined by
the reported error. Percentage estimates are drawn from normal distributions
truncated on [0,100] and count estimates drawn from distributions truncated
to non-negative values. This approach introduces diffused uncertainty across
both tracts and regression parameters: by iterating over all pseudo-datasets,
the influence of high-error tracts and variables is reduced. Second, we perform
bootstrapping over observations in each pseudo-dataset to characterize “nor-
mal” uncertainty of regression models independent of errors associated with
ACS. For each bootstrapped pseudo-dataset, we perform an LME regression
with random intercepts by city and by bearing indicators (being Northwest,
Southwest, Northeast and Southeast of downtown), as well as random slopes by
city on elv, ral and the interaction effect elv - ral.

More formally, we describe our model using the following notation. We begin
with a dataset of n observations (y;,x;). The bootstrapping process involves
drawing, with replacement, an identically-sized set of n pseudo-observations
(y;,x;) from an “original” pseudo-dataset (y;,x;) with i € [1 : n].2*  For
census tract i, variable of interest y;, a set of d covariates x; = (x;1 ... x;q)" and
corresponding reported standard errors o,, and o,, = (0g,, -..0g,,)", pseudo-

data are drawn according to y; ~ N(y}; y;‘, 051) and:

X* = (Ii1*7l’ig* .. .$¢d*)/

(3
~ (N(zi*s2i1, 00, ), N2 s 2i2,02,) .. N (@i ™ i, 05,))'

Tin

(1)

where respective normal distributions are truncated for y; and x; that are per-
centage or count variables. Variables in the “original” data that lack available

24The identical set sizes preserve the original sizes of standard errors. If for some reason it is
desirable to artificially inflate standard errors, one can simply draw fewer observations than
the size of the original dataset.
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error estimates enter directly into the bootstrapping process. For re-sampled
observation (y},x}) of city k and bearing m, we fit:

yA;f =BgE; + Bxx;f +ak + am + 5y; + € (2)

where Bg, is a vector of slopes on elv, ral and elv - ral specific to city k, E; =
(elvj,ral;, elvj-ral;)’, By is a vector of coefficients (By, Bs, ...Bq) corresponding
to the d covariates, ai is a fixed effect of being in city k, a,, a fixed effect of
having bearing m, and s,, the spatial autocorrelation factor for observation j
and variable of interest y; under L2 penalization. Variables are transformed for
better fit and standardized prior to the regression process.

Compared to a standard, single-model LME regression, our approach is sig-
nificantly more conservative: it allows for uncertainty within the data itself and
is not necessarily confined to equal-tail-ness or normality of standard errors.
The effects of observations and covariates of observations that are highly uncer-
tain given the data collection process naturally will be pulled toward zero by the
high draw-to-draw variance. Conversely, higher weight is given to observations
that are well-collected as they are drawn from tighter distributions. We demon-
strate in section B that this method not only outperforms simpler models with
the same re-sample bootstrapping procedure, but also presents better estima-
tions of significance than Wald Z-tests via a single LME regression performed
on actual ACS estimates.

There is yet another key advantage of pseudo-data-bootstrapping: the ability
to test for random effects on individual cities. While beyond the scope of this
paper, obtaining a set of random effect coefficient draws allows one to perform
alternative hypothesis tests on elevation gradient effects of a particular city,
test for differences between city-specific effects and the fixed effect, or test for
effect differences among multiple cities. We present suggestive evidence of cities
responding differently to elevation gradients in section 4, but do not present an
in-depth discussion of these issues on a city-by-city basis.

B Model Performance Checks

We perform 500 LME regressions with bootstrapped pseudo-datasets for
each of the following three response variables log-transformed: population den-
sity, median tract household income and the tract Gini. In all cases elv and
is also log-transformed. We first examine the performance of significance tests
via bootstrapping compared to fixed-effect standard-error tests with the same
LME models, but a single iteration on actual ACS estimates. Figure Al con-
trasts densities of bootstrapped coefficient distributions for log(elv) and ral
against estimated Gaussian densities of the same coefficients using the single
LME model, obtained using a Wald Z-test.

The comparison is strongly in favor of the pseudo-data-bootstrapping method.
Coefficients that have high levels of certainty under the single LME (variance
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Figure A1l: Coefficient densities from bootstrapping versus single LME model
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and altitude on density) are pulled into significantly denser distributions under
bootstrapping, suggesting an advantage in estimating the “true” effect size given
strong evidence for the existence of an effect. Other coefficients lose significance
under bootstrapping and are pulled towards zero at the density mean (altitude
on median household income and Gini), suggesting that estimations of effects
with less certainty of existence are penalized by the two-stage randomization
process and correspondingly reduced in size. Effects with high confidence of
rejecting the null hypothesis and those with low confidence hence are clearly
distinguished.

We further contrast model performance of the full, LME method with random-
intercept-only and OLS models, utilizing the same coefficients, pseudo-data and
bootstrapping approach. Holding elevation, control variables and the bootstrap
procedure constant, we obtain Akaike information criterion (AIC) estimates
for 500 iterations of the full LME regression, a reduced random effects regres-
sion with intercepts by city and bearing, and a standard OLS regression with
no panel information. AIC densities are compared for the population density
model in Figure A2; similar comparisons for tract median household income and
Gini models are available in Figures A3 and A4.

In all three cases (density, income, Gini), both the LME regression and the
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Figure A2: AIC densities of full LME regression versus reduced models,
Population density model
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random intercept regression clearly outperform OLS according to AIC.2% This
is expected, given that it is highly unlikely that no group fixed effects exist
at all across cities. Evidence of superiority of LME over random intercepts is
strong for models for population density and tract median household income
(p<0.001 via unpaired t-tests), and somewhat significant for the tract Gini
model (p=0.0525).

C Notes for Supplementary Material

We provide summarized regression output for all models used in the paper
in the Supplementary Appendix, as well as additional descriptive statistics con-
cerning the dataset. All coefficient sizes are estimated as the simple average
of estimated values for all bootstrap iterations. All models are estimated us-
ing 500 draws from the full pseudo-dataset. Bootstrap P-values are calculated
using a one-sided condition: the number of positive draws as a fraction of 500
for negative coefficient estimates, or the number of negative draws as a fraction
of 500 for positive coefficient estimates. If there are less than 5 draws for a
given variable that have opposite signs as the estimated coefficient, the nota-
tion “p<0.01” is used. We also present density plots of bootstrap coefficient
values for elv, ral and the interaction effect. Zero is marked on plots to better
visualize the relationship between each elevation effect and the null hypothesis.

25P<0.001 for all comparisons via unpaired t-tests.
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With regard to data formatting, we have elected to simply remove non-
complete observations before applying the regression model. Data augmenta-
tion is not used for the following two reasons. First, our approach necessarily
requires that all ACS variables include reported standard errors for the pseudo-
data bootstrapping procedure. Even if the values of missing data can be rel-
atively well-estimated via a first-stage imputation process or similar methods,
estimating missing standard errors is conceptually much less straightforward.
The concern is that data are usually missing for a specific reason: reported
standard errors should be much higher for tracts with missing data should the
data actually be present. If estimated standard errors are large, these observa-
tions will contribute little given the bootstrapping process if they are included.
If estimated standard errors are small, the risk that imputed data are over-
utilized and drive the results becomes a concern.

Second, an observation with one missing covariate typically misses a num-
ber of other covariates. Quintile mean income is generally available as a group
of six covariates, which are either all present or missing. Out of the 271 ob-
servations with at least one missing covariate or standard error value, only 11
miss fewer than 10. This suggests that even if multiple imputation is applied,
most observations with missing data will require the estimation of a substantial
number of covariates to be usable. This issue significantly lowers the quality
of the observations with imputed data. Since at no point in our bootstrapping
approach do we explicitly use the “full” dataset as collected (unless the exact
same set of observations is drawn at random), benefits of performing imputation
are limited to small gains to the representativeness of the data structure and a
marginally larger amount of information from which inferences are drawn. We
hence conclude that the potential costs of imputation outweigh the benefits.

Note that unless the coefficients on ral and elv - ral point in the same direc-
tion, a positive or negative sign on ral does not necessarily suggest a correspond-
ingly positive or negative altitude effect for any given response variable. Given a
dataset-average In(elv) of In(8.1) & 2.09, the coefficient on ral must be at least
twice as large in absolute value to overwhelm an opposite-direction coefficient
on elv - ral at dataset-average elevation variance. It is however straightforward
to draw inferences on elv at city-average altitude because ral = 0 at the city
average by design.

The estimation of R? values for linear mixed effects models remains a topic of
debate in modern statistics. Here we opt for a two-estimator approach outlined
by Nakagawa and Schielzeth (2013), which presents for each model a fixed effects
(marginal) R? value and a fixed-and-random effects (conditional) R? value. The
former, given our fully Gaussian specification, can simply be regarded as being
equivalent to the R? value of the OLS model created by removing all random
effects from the LME. The latter includes variance explained by the former as
well as variance explained by random intercepts. Variance for random slopes
are not included as it is somewhat difficult to integrate such components with
regular notions of statistical explanatory power (Snijders and Bosker 2011).
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There are two advantages of presenting both marginal and conditional R?
values. First, the complementary nature of the values reduces issues that may
arise from presenting only one out of the two. Given a large number of groups
relative to the dataset size, the conditional R? value will be dominated by
between-group variance and fail to adequately reflect explanatory power of fixed
effects: in an extreme case, when the group size is very large yet observation
count per group is small, the conditional R? will be close to 1 no matter how
many fixed effects terms are included. Presenting the marginal R? allows the
explanatory power of fixed effects to be examined independent of random ef-
fects, yet we would have no knowledge of the role of the random intercept if
only the marginal R? were presented. Second, visualizing both R? distributions
through bootstrapping allows us to obtain non-quantitative, yet nonetheless
useful, information about the importance of between-group variance relative to
within-group variance for each model. In the Supplementary Appendix, we pro-
vide side-by-side density plots for the two R? values for each model. Through
bootstrap densities, it is possible to not only draw inferences on general explana-
tory performance of a given model, but also on how consistent performance is
with regard to random variations in the data.

Note that in some cases, the reported marginal R? is expected to be ex-
tremely low by virtue of the model parameters. This is the case for micro-
climate effects where differences in annual and monthly temperature variance
between cities is naturally far greater than differences across various areas of
the same city. Similarly, a fixed-effects-only model of proportions of African
American residents that does not control for spatial autocorrelation is expected
to have low explanatory power. Since we do not actually draw inferences or
present coefficient values based on any fixed-effects-only estimates in the paper,
this is not an issue of concern.

One anomaly that we note in the data is the unusually low rape incident rate
of Los Angeles. (0.004 incidents per thousand persons). This is not because of a
lack of crime observations for the Los Angeles area: crime data are available for
424 out of the 796 dataset LA census tracts. Neither is the issue likely caused by
missing data: most census tracts with crime data have zero rape incidents during
the period covered by the NNCS survey. The distinction appears to be that a
far greater percentage of the LA tracts with crime data lack rape incidents. We
do not know if this is simply a result of chance given the overlap between our
elevation data and NNCS, or if there were potential data collection issues with
the original study. However, we have performed the same regression analysis on
rape incident rates in section 6.3 with data from LA omitted. Results are similar:
the coefficient on elv changes to -0.029 from -0.022 and the corresponding p-
value to 0.015 from 0.02. Because conclusions remain similar (foot crime effects
are still far greater than either the effect on rape or murder), we have reported
figures with LA data included in the paper for consistency.

Tables and Figures
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Table Al: Correlation and Pearson product-moment significance tests between
elevation effects and select census tract statistics

Population  Median Tract % of public  Poverty
density household Gini transit rate (log)
(log) income (log) commuters
(log) (log)
elv -0.55 0.187 -0.076 -0.344 -0.188
PPMCC <0.001 <0.001 <0.001 <0.001 <0.001
ral -0.03 0.131 -0.062 -0.044 -0.142
PPMCC 0.01 <0.001 <0.001 <0.001 <0.001

Figure A3: AIC densities of full LME regression versus reduced models,
median household income model
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Figure A4: AIC densities of full LME regression versus reduced models, Gini
coefficient model
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Figure A5: Distributions of random effect coefficient estimates of ral by city,

population density model
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Figure A6: Distributions of random effect coefficient estimates of log(elv) by

city, median household income model
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Figure AT: Distributions of random effect coefficient estimates of log(elv) by

city, gini coefficient model
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Figure A8: elv-population density and ral-population density curves, holding
ral and elv respectively constant
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Figure A9: DEM contour density plots of select dataset cities

Seattle San Francisco

37.85

[tel
N
4 ~
™
[To}
©
e <
4 o
Te}
~
(e}
12245 -122.35 -122.25 -122.15 -122.55 -122.45 -122.35 -122.25
New York City Portland, Oregon
o]
©
o
<
(Yo}
w
@
<
[fo}
<
v
<
(o]
[}
o
<
-74.15 -74.05 -73.95 -73.85 -122.85 -122.75 -122.65 -122.55

36



